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Visual effects in film post-production

• Nuke compositing tool (http://www.thefoundry.co.uk)
• Visual effects plugins appear as nodes in complicated effect graphs
• Execution time can be many seconds per frame

(c) Heribert Raab, Softmachine.  All rights reserved.  Images courtesy of The Foundry.

http://www.thefoundry.co.uk/
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Visual effects kernels

• Kernels – individual image processing algorithms (data parallelism)
• Abstract computations
• Iteration over images
• Image memory access patterns
• Action at each point in iteration space
• Ordinary C++ which can be compiled and run on a CPU... slowly

void DWT1D( float *input, float *highOutput, float *lowOutput, int radius ) {
  for( int y = 0; y < height; ++y ) {
    for( int x = 0; x < width; ++x ) {
      float centre = input[width*y + x];
      float high = (centre - (input[(width-radius)*y + x] 
        + input[(width+radius)*y + x]) * 0.5f) * 0.5f;
      highOutput[width*y + x] = high;
      lowOutput[width*y + x] = centre – high;
    }
  }
};
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Connecting kernels together

Image DeGrainRecurse(Image input, int level = 0) {
    Image HY,LY,HH,HL,LH,LL,HHP,HLP,LHP,LLP,pSum1,pSum2,output;

    DWT1D hDWT(eHorizontal, 1 << level);
    DWT1D vDWT(eVertical, 1 << level);
    hDWT(input, HY, LY);
    vDWT(HY, HH, HL);
    vDWT(LY, LH, LL);

    Proprietary prop;
    prop(HH, HHP);
    prop(LH, LHP);
    prop(HL, HLP);

    Sum sum;
    sum(HHP, LHP, pSum1);
    sum(HLP, pSum1, pSum2);

    /* Go to the next level of recursion. */
    LLP = (level < 3) ? DeGrainRecurse(LL, level+1) : LL;

    sum(pSum2, LLP, output);
    return output;
}

Delayed 
Evaluation



The Foundry

5

Why is a new approach necessary?

• SIMD parallelism is difficult to exploit.
• Vectorising compilers are ineffective.
• (Only 1 out of 9 of our algorithms were vectorised by Intel C/C++ 11.0.)
• Hand-vectorisation is difficult, error-prone and raises maintenance costs.
• We present a related solution for this problem in an upcoming publication.

• SIMT parallelism is also difficult to exploit.
• SIMD hardware with a parallel programming model – which requires the 
programmer to think in SIMD terms to get any performance.
• Isolating sufficient parallelism (10000s of in-flight “threads”) without 
compromising spatial locality is challenging.
• Data movement through the memory hierarchy requires micromanagement.
• Hand-parallelisation is difficult, error-prone and raises maintenance costs.

• Building a compiler to do this is tricky.
• Our innovation instead lies in metadata – to bypass tricky code analysis.
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Our approach: visual effects functors

• A single-source C++ programming model.
• Minimises maintenance costs through a write-once paradigm.
• Separates the iteration schedule from the algorithm.
• Carries metadata annotations. (Underlined, more on these in a minute.)

class DWT1D : public Functor<DWT1D, eParallel> {
    Indexer<eInput, eChannel, e1D> Input;
    Indexer<eOutput, eChannel, e0D> HighOutput;
    Indexer<eOutput, eChannel, e0D> LowOutput;
    mFunctorIndexers(Input, HighOutput, LowOutput);

    DWT1D(Axis axis, Radius radius) : Input(axis, radius) {}

    void Kernel() {
        float centre = Input();
        float high = (centre - (Input(-Input.Radius) + Input(Input.Radius)) * 0.5f) * 0.5f;
        HighOutput() = high;
        LowOutput() = centre - high;
    }
};

Discrete Wavelet Transform

Data-Parallel Kernel

Static Metadata

Dynamic Metadata
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Our approach: visual effects functors

• Programming model that supports focused and maintainable optimisations.
• Isolating the performance expertise to HPC developers, away from kernel 
authors

•  An optimising source-to-source code generator.
• Based on the ROSE source-to-source compiler framework.
• SIMD and SIMT code generation backends.
• A set of backend-specific optimising code transformations.

Visual Effects
Active Library

Polytope Loop
Representation

Scanned PolytopeC++ Kernels
with Metadata

Delayed DAG

CLooG Polyhedral
Loop Transformation

ROSE-based Source-to-Source
Optimising Code Generator

SSE-Optimised
C++ Code

CUDA-Optimised
C++ Code

Path Used in
SIMD Only
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SIMT code is useless without optimisation

• Shared memory staging.
• Localise overlapped access into fast levels of the memory hierarchy.
• Each thread stages one element from global memory into shared memory.
• Following barrier synchronisation, threads work from shared memory.

• Metadata provides explicit information to make this trivial.
• Bypasses tricky code analysis.
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DWT - metadata

void DWT( Image<float> input, 
  Image<float> highOutput, Image< float > lowOutput
  int radius )
 {

  for( int j = 0; j < height; ++j ) {
    for( int i = 0; i < height; ++i ) {
      float centre = Input( i, j );
      float high = (centre – 
        ( input( i, j-radius )
        + input( i, j-radius ) * 0.5f) * 0.5f;

        highOutput( i, j ) = high;
        lowOutput( i, j ) = centre - high;
    }
};

class DWT1D : public Functor<DWT1D, eParallel> {
    Indexer<eInput, eChannel, e1D> Input;
    Indexer<eOutput, eChannel, e0D> HighOutput;
    Indexer<eOutput, eChannel, e0D> LowOutput;
    mFunctorIndexers(Input, HighOutput, LowOutput);

    DWT1D(Axis axis, Radius radius) : Input(axis, 
radius) {}

    void Kernel() {
        float centre = Input();
        float high = (centre – (Input(-Input.Radius)
            + Input(Input.Radius)) * 0.5f) * 0.5f;
        HighOutput() = high;
        LowOutput() = centre - high;
    }
};

• The kernel will be executed at each point in the iteration schedule.
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DWT – dependence metadata

• Dependence metadata is key to manipulating the iteration schedule.
• A kernel can be embarrassingly parallel or have a loop-carried dependence.

void DWT( Image<float> input, 
  Image<float> highOutput, Image< float > lowOutput
  int radius )
 {

  for( int j = 0; j < height; ++j ) {
    for( int i = 0; i < height; ++i ) {
      float centre = Input( i, j );
      float high = (centre – 
        ( input( i, j-radius )
        + input( i, j-radius ) * 0.5f) * 0.5f;

        highOutput( i, j ) = high;
        lowOutput( i, j ) = centre - high;
    }
};

class DWT1D : public Functor<DWT1D, eParallel> {
    Indexer<eInput, eChannel, e1D> Input;
    Indexer<eOutput, eChannel, e0D> HighOutput;
    Indexer<eOutput, eChannel, e0D> LowOutput;
    mFunctorIndexers(Input, HighOutput, LowOutput);

    DWT1D(Axis axis, Radius radius) : Input(axis, 
radius) {}

    void Kernel() {
        float centre = Input();
        float high = (centre – (Input(-Input.Radius)
            + Input(Input.Radius)) * 0.5f) * 0.5f;
        HighOutput() = high;
        LowOutput() = centre - high;
    }
};
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DWT – memory access metadata

class DWT1D : public Functor<DWT1D, eParallel> {
    Indexer<eInput, eChannel, e1D> Input;
    Indexer<eOutput, eChannel, e0D> HighOutput;
    Indexer<eOutput, eChannel, e0D> LowOutput;
    mFunctorIndexers(Input, HighOutput, LowOutput);

    DWT1D(Axis axis, Radius radius) : Input(axis, 
radius) {}

    void Kernel() {
        float centre = Input();
        float high = (centre – (Input(-Input.Radius)
            + Input(Input.Radius)) * 0.5f) * 0.5f;
        HighOutput() = high;
        LowOutput() = centre - high;
    }
};

•  Memory access metadata is key to managing data movement and sharing.
• To compute one element of output, how much input does the kernel need?
• Red, green and blue together (ePixel) or one plane at a time (eChannel).
• One element (e0D), a bounded line (e1D) or a bounded rectangle (e2D).

 e0D

 e1D

 e2D
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Box blur - dependence metadata

• An example of a kernel with a loop-carried dependence.
• Note that this dependence is algorithmic, it is not inherent in the computation.

void boxBlurV( Image< float > input, 
    Image< float  > output ) {
  for( int j = 0; j < width; ++j ) {
    float movingSum = 0.0f;
    for( int r = -radius; r < radius; ++r )  {
      movingSum += input( r, 0 );
    }
    output( i, 0 ) = movingSum;
    for( int i = 1; i < height; ++i ) {
      movingSum += input( i – radius - 1, j ) + 
        input( i + radius, j );
      output( i, j ) = movingSum * muliplier;
    }
};

●class BoxBlur : public Functor<BoxBlur, eMoving> {
    ...

    BoxBlur(Axis axis, int radius)

        : Functor<BoxBlur, eMoving>(axis),

    void Initialise() {
        MovingSum = 0.0f;
        for(int i = -Input.Radius; i <= Input.Radius; ++ i)
            MovingSum += Input(i);
    }

    void Kernel() {
        MovingSum = MovingSum
            - Input(-Input.Radius-1) + Input(Input.Radius);
        Output() = MovingSum * MultBy;
    }

    const float MultBy;
    float MovingSum;
};

Inter-Iteration 
Modifiable State

State Written
(At iteration i)

Loop-Carried
True Dependence

State Read
(From iteration i-1)

State Read
(From iteration i-1)
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SIMT Optimisations – Block minimisation

• Thread block minimisation.
• In simpler kernels, thread scheduling overheads can dominate.
• One thread per pixel in a 4096x2304 image: 9.4M threads.
• A mapping of N output pixels to a single thread can alleviate this overhead.
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SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data
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SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data
• Reads are vertical

• Inefficient, non-contiguous.



The Foundry

16

SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data
• Reads are vertical

• Inefficient, non-contiguous.
• Solve by reading a block

• Limited shared memory makes this inefficient for a large number of threads.
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SIMT Optimisations - Transposition

• Alternatively we can:
• Transpose the dataset.
• Make parallelism horizontal again, so reads are efficient.

• Transposition is as easy as adding transpose nodes to the DAG.
• A post-optimisation looks for adjacent pairs of transpositions and remove them.
• Thanks to DAG metadata.
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SIMT Optimisations – Split row/column

• Split row/column parallelism.
• Algorithms which are serialised in one axis may not be parallel enough.
• GPUs keep 1000s of threads in flight – images are not usually that wide or tall.
• Parallelism can be “created” by initialising a new serialised run part-way.
• Then one thread per axis becomes two, three, four, … with a small overhead.

class BoxBlur : public Functor<BoxBlur, eMoving> {
    ...
    void Initialise() {
        MovingSum = 0.0f;
        for(int i = -Input.Radius; i <= Input.Radius; ++ i)
            MovingSum += Input(i);
    }
    ...
};
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SIMT Optimisations – Access realignment

• Memory access realignment.
• Additional requirement for memory transaction grouping in older hardware.
• Thread 0, 16, 32, etc. must access a 16-element aligned region.
• Images are appropriately aligned, but a subregion is probably not.
• We can reassign the thread:work mapping to (mostly) fix this.



The Foundry

20

Performance Evaluation
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Performance Evaluation (Degraining)

Wavelet-Based 
Degraining
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Performance Evaluation (Degraining)

Wavelet-Based 
Degraining

Out of Video Memory
(Needs Host/GPU Tiling)
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Performance Evaluation (Diffusion Filtering)

Diffusion
Filtering
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Performance Evaluation (Degraining)

Wavelet-Based 
Degraining

GeForce 8800 GTX
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Performance Evaluation (Diffusion Filtering)

Diffusion
Filtering

GeForce 8800 GTX
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Conclusions

• If performance requires parallelism and automatic optimisation:
• Dependence information must be built robustly into the code structure.
• Best effort parallelism cannot at present be relied upon. 

•Metadata-supported frameworks reduce or remove the need for code analysis.
• Trying to recover high-level algorithm concepts from an implementation is hard.
• Many such concepts embed into the implementation naturally.
• Source-to-source code generation allows reuse of low-level optimisations.

• Metadata are useful in a wide variety of optimisations.
• In this presentation we outlined some optimisations for a SIMT architecture.
• In previous work, we showed how metadata supports space and schedule 
optimisations to deliver large CPU speed-ups in visual effects DAGs.
• In to-be-published work, we show how this framework supports vectorisation for 
SSE from the same source code (32 “cores”!).
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Most importantly

• Metadata change the balance of development expertise.
• High-performance software experts can work on the library framework.
• Kernel authors can work on producing a kernel that generates the right result.

• Less developer time is used on platform-specific tuning.

• More time can be spent producing visual effects 
• Development effort targeted back to core values.
• High performance still obtained.

• All of the work in this presentation is now moving from prototype to production.
• Has been an opportunity to prototype our metadata and active libraries plans
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