
1

The Foundry

High-Performance SIMT Code Generation
in an Active Visual Effects Library

Speaker: Lee Howes

Jay L. T. Cornwall1, Lee Howes1, Paul H. J. Kelly1,
Phil Parsonage2 and Bruno Nicoletti2

1 Department of Computing, Imperial College London, UK
2 The Foundry, UK

The Foundry

2

Visual effects in film post-production

• Nuke compositing tool (http://www.thefoundry.co.uk)
• Visual effects plugins appear as nodes in complicated effect graphs
• Execution time can be many seconds per frame

(c) Heribert Raab, Softmachine. All rights reserved. Images courtesy of The Foundry.

http://www.thefoundry.co.uk/

The Foundry

3

Visual effects kernels

• Kernels – individual image processing algorithms (data parallelism)
• Abstract computations
• Iteration over images
• Image memory access patterns
• Action at each point in iteration space
• Ordinary C++ which can be compiled and run on a CPU... slowly

void DWT1D(float *input, float *highOutput, float *lowOutput, int radius) {
 for(int y = 0; y < height; ++y) {
 for(int x = 0; x < width; ++x) {
 float centre = input[width*y + x];
 float high = (centre - (input[(width-radius)*y + x]
 + input[(width+radius)*y + x]) * 0.5f) * 0.5f;
 highOutput[width*y + x] = high;
 lowOutput[width*y + x] = centre – high;
 }
 }
};

The Foundry

4

Connecting kernels together

Image DeGrainRecurse(Image input, int level = 0) {
 Image HY,LY,HH,HL,LH,LL,HHP,HLP,LHP,LLP,pSum1,pSum2,output;

 DWT1D hDWT(eHorizontal, 1 << level);
 DWT1D vDWT(eVertical, 1 << level);
 hDWT(input, HY, LY);
 vDWT(HY, HH, HL);
 vDWT(LY, LH, LL);

 Proprietary prop;
 prop(HH, HHP);
 prop(LH, LHP);
 prop(HL, HLP);

 Sum sum;
 sum(HHP, LHP, pSum1);
 sum(HLP, pSum1, pSum2);

 /* Go to the next level of recursion. */
 LLP = (level < 3) ? DeGrainRecurse(LL, level+1) : LL;

 sum(pSum2, LLP, output);
 return output;
}

Delayed
Evaluation

The Foundry

5

Why is a new approach necessary?

• SIMD parallelism is difficult to exploit.
• Vectorising compilers are ineffective.
• (Only 1 out of 9 of our algorithms were vectorised by Intel C/C++ 11.0.)
• Hand-vectorisation is difficult, error-prone and raises maintenance costs.
• We present a related solution for this problem in an upcoming publication.

• SIMT parallelism is also difficult to exploit.
• SIMD hardware with a parallel programming model – which requires the
programmer to think in SIMD terms to get any performance.
• Isolating sufficient parallelism (10000s of in-flight “threads”) without
compromising spatial locality is challenging.
• Data movement through the memory hierarchy requires micromanagement.
• Hand-parallelisation is difficult, error-prone and raises maintenance costs.

• Building a compiler to do this is tricky.
• Our innovation instead lies in metadata – to bypass tricky code analysis.

The Foundry

6

Our approach: visual effects functors

• A single-source C++ programming model.
• Minimises maintenance costs through a write-once paradigm.
• Separates the iteration schedule from the algorithm.
• Carries metadata annotations. (Underlined, more on these in a minute.)

class DWT1D : public Functor<DWT1D, eParallel> {
 Indexer<eInput, eChannel, e1D> Input;
 Indexer<eOutput, eChannel, e0D> HighOutput;
 Indexer<eOutput, eChannel, e0D> LowOutput;
 mFunctorIndexers(Input, HighOutput, LowOutput);

 DWT1D(Axis axis, Radius radius) : Input(axis, radius) {}

 void Kernel() {
 float centre = Input();
 float high = (centre - (Input(-Input.Radius) + Input(Input.Radius)) * 0.5f) * 0.5f;
 HighOutput() = high;
 LowOutput() = centre - high;
 }
};

Discrete Wavelet Transform

Data-Parallel Kernel

Static Metadata

Dynamic Metadata

The Foundry

7

Our approach: visual effects functors

• Programming model that supports focused and maintainable optimisations.
• Isolating the performance expertise to HPC developers, away from kernel
authors

• An optimising source-to-source code generator.
• Based on the ROSE source-to-source compiler framework.
• SIMD and SIMT code generation backends.
• A set of backend-specific optimising code transformations.

Visual Effects
Active Library

Polytope Loop
Representation

Scanned PolytopeC++ Kernels
with Metadata

Delayed DAG

CLooG Polyhedral
Loop Transformation

ROSE-based Source-to-Source
Optimising Code Generator

SSE-Optimised
C++ Code

CUDA-Optimised
C++ Code

Path Used in
SIMD Only

The Foundry

8

SIMT code is useless without optimisation

• Shared memory staging.
• Localise overlapped access into fast levels of the memory hierarchy.
• Each thread stages one element from global memory into shared memory.
• Following barrier synchronisation, threads work from shared memory.

• Metadata provides explicit information to make this trivial.
• Bypasses tricky code analysis.

The Foundry

9

DWT - metadata

void DWT(Image<float> input,
 Image<float> highOutput, Image< float > lowOutput
 int radius)
 {

 for(int j = 0; j < height; ++j) {
 for(int i = 0; i < height; ++i) {
 float centre = Input(i, j);
 float high = (centre –
 (input(i, j-radius)
 + input(i, j-radius) * 0.5f) * 0.5f;

 highOutput(i, j) = high;
 lowOutput(i, j) = centre - high;
 }
};

class DWT1D : public Functor<DWT1D, eParallel> {
 Indexer<eInput, eChannel, e1D> Input;
 Indexer<eOutput, eChannel, e0D> HighOutput;
 Indexer<eOutput, eChannel, e0D> LowOutput;
 mFunctorIndexers(Input, HighOutput, LowOutput);

 DWT1D(Axis axis, Radius radius) : Input(axis,
radius) {}

 void Kernel() {
 float centre = Input();
 float high = (centre – (Input(-Input.Radius)
 + Input(Input.Radius)) * 0.5f) * 0.5f;
 HighOutput() = high;
 LowOutput() = centre - high;
 }
};

• The kernel will be executed at each point in the iteration schedule.

The Foundry

10

DWT – dependence metadata

• Dependence metadata is key to manipulating the iteration schedule.
• A kernel can be embarrassingly parallel or have a loop-carried dependence.

void DWT(Image<float> input,
 Image<float> highOutput, Image< float > lowOutput
 int radius)
 {

 for(int j = 0; j < height; ++j) {
 for(int i = 0; i < height; ++i) {
 float centre = Input(i, j);
 float high = (centre –
 (input(i, j-radius)
 + input(i, j-radius) * 0.5f) * 0.5f;

 highOutput(i, j) = high;
 lowOutput(i, j) = centre - high;
 }
};

class DWT1D : public Functor<DWT1D, eParallel> {
 Indexer<eInput, eChannel, e1D> Input;
 Indexer<eOutput, eChannel, e0D> HighOutput;
 Indexer<eOutput, eChannel, e0D> LowOutput;
 mFunctorIndexers(Input, HighOutput, LowOutput);

 DWT1D(Axis axis, Radius radius) : Input(axis,
radius) {}

 void Kernel() {
 float centre = Input();
 float high = (centre – (Input(-Input.Radius)
 + Input(Input.Radius)) * 0.5f) * 0.5f;
 HighOutput() = high;
 LowOutput() = centre - high;
 }
};

The Foundry

11

DWT – memory access metadata

class DWT1D : public Functor<DWT1D, eParallel> {
 Indexer<eInput, eChannel, e1D> Input;
 Indexer<eOutput, eChannel, e0D> HighOutput;
 Indexer<eOutput, eChannel, e0D> LowOutput;
 mFunctorIndexers(Input, HighOutput, LowOutput);

 DWT1D(Axis axis, Radius radius) : Input(axis,
radius) {}

 void Kernel() {
 float centre = Input();
 float high = (centre – (Input(-Input.Radius)
 + Input(Input.Radius)) * 0.5f) * 0.5f;
 HighOutput() = high;
 LowOutput() = centre - high;
 }
};

• Memory access metadata is key to managing data movement and sharing.
• To compute one element of output, how much input does the kernel need?
• Red, green and blue together (ePixel) or one plane at a time (eChannel).
• One element (e0D), a bounded line (e1D) or a bounded rectangle (e2D).

 e0D

 e1D

 e2D

The Foundry

12

Box blur - dependence metadata

• An example of a kernel with a loop-carried dependence.
• Note that this dependence is algorithmic, it is not inherent in the computation.

void boxBlurV(Image< float > input,
 Image< float > output) {
 for(int j = 0; j < width; ++j) {
 float movingSum = 0.0f;
 for(int r = -radius; r < radius; ++r) {
 movingSum += input(r, 0);
 }
 output(i, 0) = movingSum;
 for(int i = 1; i < height; ++i) {
 movingSum += input(i – radius - 1, j) +
 input(i + radius, j);
 output(i, j) = movingSum * muliplier;
 }
};

●class BoxBlur : public Functor<BoxBlur, eMoving> {
 ...

 BoxBlur(Axis axis, int radius)

 : Functor<BoxBlur, eMoving>(axis),

 void Initialise() {
 MovingSum = 0.0f;
 for(int i = -Input.Radius; i <= Input.Radius; ++ i)
 MovingSum += Input(i);
 }

 void Kernel() {
 MovingSum = MovingSum
 - Input(-Input.Radius-1) + Input(Input.Radius);
 Output() = MovingSum * MultBy;
 }

 const float MultBy;
 float MovingSum;
};

Inter-Iteration
Modifiable State

State Written
(At iteration i)

Loop-Carried
True Dependence

State Read
(From iteration i-1)

State Read
(From iteration i-1)

The Foundry

13

SIMT Optimisations – Block minimisation

• Thread block minimisation.
• In simpler kernels, thread scheduling overheads can dominate.
• One thread per pixel in a 4096x2304 image: 9.4M threads.
• A mapping of N output pixels to a single thread can alleviate this overhead.

The Foundry

14

SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data

The Foundry

15

SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data
• Reads are vertical

• Inefficient, non-contiguous.

The Foundry

16

SIMT Optimisations – horizontal rolling filters

• Threads move horizontally through the data
• Reads are vertical

• Inefficient, non-contiguous.
• Solve by reading a block

• Limited shared memory makes this inefficient for a large number of threads.

The Foundry

17

SIMT Optimisations - Transposition

• Alternatively we can:
• Transpose the dataset.
• Make parallelism horizontal again, so reads are efficient.

• Transposition is as easy as adding transpose nodes to the DAG.
• A post-optimisation looks for adjacent pairs of transpositions and remove them.
• Thanks to DAG metadata.

The Foundry

18

SIMT Optimisations – Split row/column

• Split row/column parallelism.
• Algorithms which are serialised in one axis may not be parallel enough.
• GPUs keep 1000s of threads in flight – images are not usually that wide or tall.
• Parallelism can be “created” by initialising a new serialised run part-way.
• Then one thread per axis becomes two, three, four, … with a small overhead.

class BoxBlur : public Functor<BoxBlur, eMoving> {
 ...
 void Initialise() {
 MovingSum = 0.0f;
 for(int i = -Input.Radius; i <= Input.Radius; ++ i)
 MovingSum += Input(i);
 }
 ...
};

The Foundry

19

SIMT Optimisations – Access realignment

• Memory access realignment.
• Additional requirement for memory transaction grouping in older hardware.
• Thread 0, 16, 32, etc. must access a 16-element aligned region.
• Images are appropriately aligned, but a subregion is probably not.
• We can reassign the thread:work mapping to (mostly) fix this.

The Foundry

20

Performance Evaluation

The Foundry

21

Performance Evaluation (Degraining)

Wavelet-Based
Degraining

The Foundry

22

Performance Evaluation (Degraining)

Wavelet-Based
Degraining

Out of Video Memory
(Needs Host/GPU Tiling)

The Foundry

23

Performance Evaluation (Diffusion Filtering)

Diffusion
Filtering

The Foundry

24

Performance Evaluation (Degraining)

Wavelet-Based
Degraining

GeForce 8800 GTX

The Foundry

25

Performance Evaluation (Diffusion Filtering)

Diffusion
Filtering

GeForce 8800 GTX

The Foundry

26

Conclusions

• If performance requires parallelism and automatic optimisation:
• Dependence information must be built robustly into the code structure.
• Best effort parallelism cannot at present be relied upon.

•Metadata-supported frameworks reduce or remove the need for code analysis.
• Trying to recover high-level algorithm concepts from an implementation is hard.
• Many such concepts embed into the implementation naturally.
• Source-to-source code generation allows reuse of low-level optimisations.

• Metadata are useful in a wide variety of optimisations.
• In this presentation we outlined some optimisations for a SIMT architecture.
• In previous work, we showed how metadata supports space and schedule
optimisations to deliver large CPU speed-ups in visual effects DAGs.
• In to-be-published work, we show how this framework supports vectorisation for
SSE from the same source code (32 “cores”!).

The Foundry

27

Most importantly

• Metadata change the balance of development expertise.
• High-performance software experts can work on the library framework.
• Kernel authors can work on producing a kernel that generates the right result.

• Less developer time is used on platform-specific tuning.

• More time can be spent producing visual effects
• Development effort targeted back to core values.
• High performance still obtained.

• All of the work in this presentation is now moving from prototype to production.
• Has been an opportunity to prototype our metadata and active libraries plans

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

