
Formalizing Address Spaces with
application to Cuda, OpenCL, and beyond

Benedict R. Gaster
Advanced Micro Devices, 1 AMD, Sunnyvale, CA,

USA
benedict.gaster@amd.com

Lee Howes
Advanced Micro Devices, 1 AMD, Sunnyvale, CA,

USA
lee.howes@amd.com

Abstract
Cuda and OpenCL are aimed at programmers developing paral-
lel applications targeting GPUs and embedded micro-processors.
These systems often have explicitly managed memories exposed
directly though a notion of disjoint address spaces. OpenCL ad-
dress spaces are based on a similar concept found in Embedded C.
A limitation of OpenCL is that a specific pointer must be assigned
to a particular address space and thus functions, for example, must
say which pointer arguments point to which address spaces. This
leads to a loss of composability and moreover can lead to imple-
menting multiple versions of the same function. This problem is
compounded in the OpenCL C++ variant where a class’ implicit
this pointer can be applied to multiple address spaces.

Modern GPUs, such as AMD’s Graphics Core Next and Nvidia’s
Fermi, support an additional generic address space that dynami-
cally determines an address’ disjoint address space, submitting the
correct load/store operation to the particular memory subsystem.
Generic address spaces allow for dynamic casting between generic
and non-generic address spaces that is similar to the dynamic sub-
typing found in objected oriented languages. The advantage of the
generic address space is it simplifies the programming model but
sometimes at the cost of decreased performance, both dynamically
and due to the optimization a compiler can safely perform.

This paper describes a new type system for inferring Cuda and
OpenCL style address spaces. We show that the address space
system can be inferred. We extend this base system with a notion
of generic address space, including dynamic casting, and show that
there also exists a static translation to architectures without support
for generic address spaces but comes at a potential performance
cost. This performance cost can be reclaimed when an architecture
directly supports generic address space.

1. Introduction
Address spaces play a fundamental role in description of data lo-
cality in programming languages, allowing the developer to explic-
itly manage where data lives during program execution. Originally
developed as a generic extension to the Embedded C [12] vari-
ant of ANSI C, address spaces have recently gained popularity in
programming languages for General Purpose Graphics Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPPGU-6, March 16 2013, Houston, TX, USA
Copyright c© 2013 ACM 978-1-4503-2017-7/13/03. . . $15.00

Figure 1. Abstract memory model defined by OpenCL

Units (GPGPU). In particular, Nvidia’s Cuda [21] has support for
disjoint address spaces as a type modifier, while Khronos’ Open
Compute Language (OpenCL) [22] formalizes them as type quali-
fiers as a variant of Embedded C, shown diagrammatically in Fig-
ure 1. A work-item is an instance of kernel at each projection point
within a 3D iteration space, with access to its own private memory,
a local memory that is shared between a collection of work-items
(called a work-group), and finally a globally visible memory shared
between all concurrently executing work-items. Each address space
is disjoint and is assumed not to overlap.

As an example consider the following code that scales a vector
(A) by a constant(s) outputting a vector (C)1:

kernel void vscale(global int * C, global int * A,
const global int * S)

{
C[get_global_id(0)] =

A[get_global_id(0)] * S[get_group_id(0)];
}

The implication of OpenCL address spaces are that every pointer
must be associated with an address space. The drawback with this
approach, relaxed somewhat in Cuda’s model, is the inability to pa-
rameterize over address spaces, i.e. define parametric polymorphic

1 The function get_global_id(size_t) returns the projection within the
3D iteration space that the kernel is being executed over, the argument (0,1,
or 2) selects the dimension.

Figure 2. Generic address space

functions that are implicitly parametrized by address spaces. For
example, consider a simple function to scale a value:

int scale(global int * A, global int * S);

It is easy to adapt the kernel vscale above to call scale. However,
a typical optimization would be to move S into optimized on chip
memory accessed via the read only memory segment constant:

kernel void vscale(global int * C, global int * A,
constant int * S)

{
C[get_global_id(0)] = scale(&A[get_global_id(0)],

&S[get_group_id(0)]);
}

Of course, this is will no longer type check as the type of S no
longer matches scales second argument. To address this limitation
we introduce an additional address space generic. (Note we assume
generic to be the default address space and as such it can be elided
in practice.) scale would be prototyped as:

int scale(generic int * A, generic int * B);

The generic address space defines a single address space that sub-
sumes all others, as depicted in Figure 2. The particular placement
of the different memory spaces within generic is an implementa-
tion detail that is independent of our definition and use of generic,
i.e. we could have equally have placed global at the far right of the
address map and seen no semantic difference.

In many cases it is straightforward to infer a specific address
space instance in place of a generic one, using a modified version
of the Hidley-Milner type inference algorithm [4, 10, 18]. However,
in general it is not possible because a value within a generic address
space may take on the type of multiple address spaces over its
life time. For example, consider the following code that assigns
a pointer in the global address space to each even work-item and a
pointer in local address space to each odd work-item:

void foo(int *);

kernel void bar(
global int *g, local int *l)

{
generic int * tmp;

if (get_global_id(0) % 2) {
tmp = g;

}
else {

tmp = l;
}

foo(tmp);
}

In this case to preserve the single code base for all work-items the
type of tmp needs to allow for the alternative address spaces global
and local. Such alternatives are common in type systems and are
known as variant or sum types, i.e. an alternative type of tmp is:

global + local int *;

with one alternative indicating that a value is in the global address
space and the other in the local address space.

Unfortunately, while the introduction of variant address spaces
goes part of the way to providing types for generic address spaces,
it requires that a particular address space component be uniquely
determined at compile-time. The implication is that such a system
does not support both variant address spaces and parametric poly-
morphism over address spaces, i.e. it would fail to provide a prin-
cipal type for foo in the above example. What is needed is a way of
combining generic address spaces with variant address spaces. The
type system proposed in this paper is just such a system.

Before describing our system in detail we first consider the
runtime implementation of such a system. In particular, due to
the disjoint nature of address spaces, an implementation is free to
support different load/store operations for different address spaces.
An implication of such hardware targets is a compiler must be able
to determine, at compile-time, a unique address space. However,
not all targets have this limitation and in fact Nvidia’s Fermi [20]
and AMD’s Graphics Core Next (GCN) [17] both support a notion
of generic address space, providing a mapping conceptually similar
to that of Figure 2.

Even with hardware support for generic address spaces it may
be beneficial to emit specialized (i.e. unique address space) loads
and stores for performance or power considerations. For example,
both Fermi and GCN provide specialized load and store operations.

1.1 This paper
The type system described in this paper combines the notion of
generic address spaces with variant address spaces to provide
a practical type system for languages such as Cuda [21] and
OpenCL [22]. In particular, it supports polymorphic (i.e. generic)
address spaces, extensibility (the ability to add or remove address
spaces from a type), type inference, down casting to and from
generic address spaces, and compilation. The type system is an
application of qualified types, extended to deal with a general con-
cept of polymorphic address spaces. Positive information about
which address spaces are expected is captured in a given address
space variable, called a row, using row extension, while negative
information is reflected by the use of predicates.

The most obvious benefit of this is that we can adapt results
and properties from the general framework of qualified types—
such as the type inference algorithm and the compilation method—
without having to go back to first principles. The result is a consid-
erable simplification of both the overall presentation and of specific
proofs.

One important aspect of our system is that while formally de-
fined it has very practical implications. In particular, we contacted
and worked with AMD’s OpenCL team to implement a modified
version of our algorithm in their implementation of OpenCL C++,
a C++ language extension for programming OpenCL devices. We
expect that our algorithm will form the foundation for specifying
generic address spaces within OpenCL C too and could be used in
a Cuda compiler flow to generate more refined address space access
information.

This paper makes a number of novel and important contribu-
tions:

• We develop a theory of address spaces that is applicable to
Cuda, OpenCL and other Embedded C variants. Including, for-
malizing address space type inference and support for generic
(polymorphic) address spaces.

• We show that our system can be applied to the dynamic
generic address space of architectures such as AMD’s GCN
and Nvidia’s Fermi.

a ::= global | local | private address spaces
t ::= int interger types

| t ∗ pointer types
| ASpace {a | r} t address space qualifed type

p ::= t x parameter/field specifications
e ::= x | c | e(~e) variables, constants, applications

| e op e binary operations
vd ::= p = e value declarations
s ::= e; | vd; expressions, declarations

| ∗a e; indirect load
| return e; return from function
| x = e; assignments
| ∗x = e; indirect assignments
| if (e) { ~s } else { ~s } conditionals
| while (e) { ~s } while loop

d ::= vd value declarations
| t x(~p) {~s} function declarations
| kernel void x(~p) {~s} kernel declarations

tl ::= ~d; declarations

Figure 3. The MiniAS concrete syntax. We assume non-terminals
x for identifiers, c for constants, and r for row variables. The non-
terminal op ranges over binary operations, e.g. +,−, etc.

• We show that the theory of qualified types has application
outside of its traditional application area, that of functional
programming languages such as Haskell [16] and Habit [19].

• We have implemented a prototype compiler, in the functional
language Haskell [16], that can be used by other compiler
writers to develop practical implementations of their own. As
noted above AMD’s OpenCL compiler team have already done
just this in practice, and is the foundation of their OpenCL C++
implementation found in the product APP SDK 2.7.

A note to the reader; this paper describes a formal foundation
for address space used in languages such as Cuda and OpenCL,
including describing a system for inferring address space usage
when emitted by the programmer. This paper does not describe par-
ticular syntactic constructs for extending languages like Cuda and
OpenCL with generic address spaces, however, a companion pa-
per, also at this conference, describes an application of this model
to OpenCL C++l [8]. This companion paper also includes an eval-
uation of OpenCL C++’s key features, including generic address
spaces. It is the intention that these two papers be read together.

The remaining sections of this paper are as follows: Section 2
provides a general overview of our new type system, with a more
detailed formal presentation in Section 3. This is followed by dis-
cussion of type inference in Section 4 and compilation in Section 5.
Section 6 discusses how the base system can be extended to sup-
port casting to and from generic address spaces. Section 7 discusses
related and previous work. Finally, Section 8 concludes with a dis-
cussion of future work.

2. Overview
Since Cuda and OpenCL C are extensions to C++ and C, respec-
tively, both of which are too complex for a concise formal defini-
tion, we concentrate here on a subset of these languages that reflects
essential aspects of the extensions.

With out loss of generality we further choose to concentrate on
the extended C subset of C as this simplifies the type system con-
siderably. We note that it is straightforward to extend out system
with class subtyping, handled with bounded polymorphism [2, 3],

and handle recursive template subtyping with bounded polymor-
phism [2, 3]. We call this language MiniAS.

The abstract syntax for MiniAS programs is given in Figure 3.

2.1 Basic operations
Address space types are defined in terms of rows, and these are
constructed by extension, starting from the empty row, {}. It is
convenient to use the following abbreviations for rows:

{a1, ..., an | r} = {a1 | ...{an | r}...}
{a1, ..., an} = {a1 | ...{an | {}}...}

Intuitively, an address space of type ASpace {a | r} τ ∗ is a
variant (or union) whose component a implies that the resulting
pointer type τ ∗ can be in that address space, and whose component
Aspace r ranges over some still to be determined address spaces.
The basic operations for address spaces are:

• Definition (injection): to define a pointer, with initializer, with
an address space:

τ ∗ x = :: (r\a)⇒ τ → ASpace {a | r} τ ∗
a τ ∗ x = :: (r\a)⇒ τ → ASpace {a | r} τ ∗

• Assignment (injection): to perform an assignment of a pointer
in the same address space

= :: (r\a)⇒ ASpace {a | r} τ ∗
→ ASpace {a | r} τ ∗
→ ASpace {a | r} τ ∗

• Assignment (Embedding): to perform an assignment of a
pointer with a new address space:

= :: (r\a)⇒ ASpace r τ ∗
→ ASpace {a | r} τ ∗
→ ASpace {a | r} τ ∗

• De-reference: to perform a de-reference from pointer address2:

ld() :: ASpace{a} τ ∗ → τ

lda() :: (r\a)⇒ (ASpace{a} τ ∗ → τ)
→ ASpace {a | r} τ → τ

ld(, , , ,) :: (ASpace{global} τ ∗ → τ)
→ (ASpace{local} τ ∗ → τ)
→ (ASpace{private} τ ∗ → τ)
→ ASpace r τ ∗
τ

The empty address space, {}, is the only value of typeASpace{}.
Predicates are useful for the formal system described below but are
not required to be written in MiniAS programs. When is clear from
context that an address space is monomorphic, i.e. a unique address
space, we will write:

global int * x = ...;
local int * y = ...;
*x = *y;

when formally we would have written:

ASpace { global } int * x = ...;
ASpace { local } int * y = ...;
st_global(x, ld_local(y));

In the case of polymorphic address spaces (i.e. row variables)
we will just elide the address space altogether, e.g.:

2 We elide the store case as it is defined in a similar fashion and adds little.

ASpace r int * var = 0;

will be written as

int * var;

dropping the zero initializer too.
The interesting case is de-reference, when the particular address

space is not known at compile time and thus must work for any
valid address space. For example, consider then following:

kernel void x(
global * int g,
local * int l,
int value)

{
int * var = 0;
if (value % 2) {

var = g;
}
else {

var = l;
}

*g = *var;
}

In general, is not possible to know the address space for the de-
reference, ∗var, and so the dereference operation must be able to
perform a load from any address space. Filling in all the annotations
the example would be written as:

kernel void x(
ASpace { global } * int g,
ASpace { local } * int l,
int value)

{
ASpace r int * var = 0;
if (value % 2) {

var = g;
}
else {

var = l;
}

store_global(g,
ld(var, ld_global, ld_local, ld_private);

}

The example provides implementations, i.e. ld aspace, for all pos-
sible address spaces and thus is total, i.e. will not cause an unex-
pected load from address space error.

2.2 Implementation details
The implementation of address spaces must select, in the fully
generic case at runtime, the load or store instruction that matches an
individual address space. To select a particular load load aspace
from an address space a, we need to know the address space ID
representing the value a. Each address space is assigned an integer
ID defined as follows3:

global = 0
local = 1
private = 2

MiniAS programs without generic address load/stores, i.e. standard
OpenCL 1.2 programs, only contain load/stores whose address

3 This mapping is just one possible mapping.

space is known, and hence the full type of a, is known at compile-
time.

In the more general case of generic address spaces it is not nec-
essary to know the address space (ID) for every load and store at
compile-time; instead, we treat unknown offsets as implicit param-
eters whose values will be supplied at run-time when the full types
of the load/stores concerned are known. Intuitively, load/stores are
implemented as a jump table, where the ID provides the index into
the jump table, selecting a specific load/store. This is essentially
the compilation method of Gaster and Jones [9]. If for a moment
we forget about typing issues, then the load(, , , ,) could be
implemented as:

load(idx, gld, lld, pld, addr)
{

switch idx {
case 0:

return gld(addr);
case 1:

return lld(addr);
case 2:

return pld(addr);
}

}

Of course, there are run-time overheads in passing offset values as
extra parameters. However, an attractive feature of our system is
these costs are only incurred when the extra flexibility of generic
address spaces is required. Moreover, an architecture that supports
generic address spaces directly, e.g. Nvidia’s Fermi, can simply
elide the additional parameters and jump-tables, issuing a single
load or store instruction. Each predicate r\a in the type of a func-
tion signals the need for an extra run-time parameter to specify the
address-space used to determine the particular load/store. This one
single extra piece of information is all that is needed to implement
the full set of address space operations.

The type checker gathers and simplifies the predicates generated
by each use of an operator on address spaces. For example, the
derived type, for the load of x, in the following:

global int * x = ...;
... *x ...;

will generate a single constraint, {}\global. Predicates, like this,
involving rows whose structure is known at compile-time, are eas-
ily discharged by calculating the appropriate address space ID. Ob-
viously, a compiler can use this information to produce efficient
code by inlining and specializing to emit a specific load instruc-
tion, for the corresponding address space. It is possible to show
that for all MiniAS programs that use only explicit address spaces,
i.e. OpenCL 1.2 programs, then all predicates can be statically de-
termined and thus discharged at compile time. We return to this and
additional static properties during the formalization of the model.

Predicates that are not discharged within a section of code will,
instead, be reflected in the type assigned to it. For an implemen-
tation not supporting generic address spaces in hardware it is pos-
sible to easily define rules that restrict generic address spaces for
function arguments and variable definitions to be defined only for a
single address-space instance. For example, a compiler might reject
types which contain multiple predicates for the same row variable,
but allow functions whose arguments are generic address spaces.
This would allow:

kernel void foo(int * x)
{

...
}

global int * g = ...;
local int * l = ...;

foo(g);
foo(l);

while disallowing:

kernel void bar(global int * g, local int * l)
{

int * a;

if (...) {
a = g;

} else {
a = l;

}
}

A consequence of these restrictions is that it is straightforward to
define a translation, based on the notion of simplification [13],
to specialize, at compile time, all predicated function calls, to
a MiniAS program that is guaranteed to contain no discharged
predicates4.

3. Formal presentation
MiniAS’s type system is based on Jones’ theory of qualified
types [13] adapting the notion of subtyping for records and variants
developed by Gaster and Jones [9].

3.1 Kinds
k ::= ∗ the kind of all types
| row the kind of rows
| aspace the kind of address spaces
| k1 → k2 function kinds

Intuitively the kind k1 → k2 represents the constructors that
take something of kind k1 and return something of kind k2. The
row kind is from Gaster and Jones’ system [9]. The aspace kind
represents the kind of address spaces and is new to the system
presented in this paper.

3.2 Types and constructors
For each kind k, we have a collection of construtors Ck (including
variables αk of kind k:

Ck ::= Xk constants
| αk variables
| Ck

′→kCk
′

applications
τ ::= C∗ types

The usual collection of types, represented here by the symbol
τ , is just the constructors of kind ∗. For the purposes of this paper,
we assume that the set of constant constructors includes at least the
following, writingX ::k to indicate the kind k associated with each
constant X :

→ :: ∗ → ∗ → ∗ function space
{} :: row empty row
{ | } :: aspace→ row → row extension, for each address space
ASpace :: row → ∗ → ∗ address space construction

• The result of applying the function space constructor→ to two
types τ and τ ′ is the type of functions from τ to τ ′, and is
written as τ → τ ′ in more conventional notation. Technically

4 This restriction is effectively Haskell’s monomorphism restriction [16].

MiniAS functions are uncurried (i.e. of the form (τ1, ..., τn)→
τ) but for ease of description we will use curryed notation (i.e.
τ1 → ...→ τn → τ).

• The result of applying the ASpace constant to the empty row
{} of kind row and some type τ ∗ is the type Aspace {} τ ∗ of
kind ∗.

• The result of applying an extension constructor { | } to a type
τ and a row r is a row, usually written as {a | r}, obtained by
extending r with a an address space a. Note that we include an
extension constructor for each different address space a.

The kind system is used to ensure that type expressions are well-
formed. While it is sometimes convenient to annotate individual
constructors with their kinds, there is no need in practice for a pro-
grammer to supply these annotations. Instead, they can be calcu-
lated automatically using a simple kind inference process [14].

We consider two rows to be equivalent if they include the same
address spaces, regardless of the order in which they are listed. This
is described formally by the equation:

{a, a′ | r} = {a′, a | r}
For the purposes of later sections, we define a membership

relation, a ∈ r, to describe when a particular address space a
appears in a row r:

a ∈ {a | r} a ∈ r
[a 6= a′]

a ∈ {a′ | r}
and a restriction operation, r− a , that returns the row obtained

from r by deleting the address space a:

{a | r} − a = r
{a′ | r} − a = {a′ | r − a}

It is easy to prove that these operations are well-defined with
respect to the equality on constructors, and to confirm intuitions
about their interpretation by showing that, if a ∈ r, then r =
{a | r − a}.

3.3 Predicates
The syntax for rows allows examples like {a, a} where the ad-
dress space a appears in more than one field. Clearly, we do not
want an address space to appear twice and some additional mech-
anisms are needed to enable us to specify that a type of the form
ASpace{a |r}, for example, is only valid if the row r does not also
contain a. We achieve this using the lacks predicate of Gaster and
Jones’ [9]:

π :: Crow\a predicates

Intuitively, the predicate r\a can be read as an assertion that
the row r does not contain the address space a. More precisely,
we explain the meaning of predicates using the entailment relation
defined in Figure 4. A derivation of P |= π from these rules can be
understood as a proof that, if all of the predicates in the set P hold,
then so does π. It is easy to prove that the relation |= is well-defined
with respect to equality of constructors.

P ∪ {π} |= π
P |= r\a a 6= a′

P |= {a′ | r}\a
P |= {}\a

Figure 4. Predicate entailment for rows.

[EMPTY]
P |Γ `; : void

P |Γ ` e : τ P |Γ ` z : τ ′

[RET]
P |Γ ` return e; z : τ

(x : σ) ∈ Γ
[VAR]

P |Γ ` x : σ

P |Γ ` e : τ ′ P |Γ ` z : τ
[EXPR]

P |Γ ` e; z : τ

P |Γ ` e : τ P |Γ, v : τ ` z : τ ′

[VDECL]
P |Γ ` τ v = e; z : τ ′

P |Γ ` e : bool P |Γ ` z0; z : τ P |Γ ` z1; z : τ
[IF]

P |Γ ` if (e) {z0} else {z1}; z : τ

v : τ ∈ Γ P |Γ, v : τ ` e : τ P |Γ, v : τ ` z : τ ′

[VASSIGN]
P |Γ ` v = e; z : τ ′

P |Γ ` e : bool P |Γ ` z : void P |Γ ` z′ : τ ′

[WHILE]
P |Γ ` while (e) {z}; z′ : τ ′

P |Γ ` e : π ⇒ ρ P |= π
[⇒ E]

P |Γ ` e : ρ

P, π|Γ ` e : ρ
[⇒ I]

P |Γ ` e : π ⇒ ρ

P |Γ ` e : ∀α.σ
[∀E]

P |Γ ` e : [τ/α]σ

P |Γ ` e : σ P |Γ ` e : α /∈ TV (Γ) ∪ TV (P)
[∀I]

P |Γ ` e : ∀α.σ

P |Γ, vi : τi ` e : b : τ
[FCN]

P |Γ ` τ x(vi) {b} :→ (ti)→ τ

(x→ (ti)→ τ) ∈ Γ P |Γ ` ei : τi
[APP]

P |Γ ` x(ei) : τ

Pi|Γ `W fi(vi){bi} : σi P ′|Γfi , fi : σi) `W b′ : τ
[PROGRAM]

P ′|Γ `W fi(vi){bi} main(){b′} : τ

Figure 5. MiniAS Typing Rules

3.4 Typing rules
Following Damas and Milner [4], we distinguish between the sim-
ple types τ , described above, and type schemes, σ, described by the
grammar below:

σ ::= ρ | ∀α.ρ type schemes
ρ ::= τ | π ⇒ τ qualified types

For simplicity of presentation and due to the fact that MiniAS
does not support general polymorphic types, we restrict our presen-
tation to type schemes with type variables of kind row.

Restrictions on the instantiation of universal quantifiers, and
hence on polymorphism, are described by encoding the required
constraints as a set of predicates, P , in a qualified type of the form
P ⇒ τ . The set of free type variables in a object X is written as
TV (X).

The syntax for our term language is that of MiniAS, defined
in Figure 3. Each of the address-space load and store operations
is assigned a closed type scheme, σld/st. The typing rules are
presented in Figure 5.

4. Type inference
This section provides a formal presentation of a type-inference
algorithm for inferring address space usage. The most important
feature is our adaptation of Gaster and Jones’ [9] inserters for
address spaces, to account for non-trivial equalities between row
expressions during unification.

4.1 Unification and insertion
Unification is a standard tool in type inference, and is used, for
example to ensure that the formal and actual address space param-
eters of a function have the same type. Formally, a substitution is
S is a unifier of constructors C,C′ ∈ Ck if SC = SC′, and is
a most general unifier of C and C′ if every unifier of these two

constructors can be written in the form RS, for some substitution
R.

(id) C
id∼ C

(bindL) α
[C/α]∼ C α /∈ TV (C)

(bindR) C
[C/α]∼ α α /∈ TV (C)

(apply)

C
U∼ C′ UD

U′
∼ UD′

CD
U′U∼ C′D′

(row)

a
I
∈ r′ Ir

U∼ (Ir′ − a)

{a | r} UI∼ r′

Figure 6. Kind-perserving unification

The rules in Figure 6 provide an algorithm for calculating uni-
fiers, writing C U∼ C′ for the assertion that U is a unifier of the
constructors C,C′ ∈ Ck. The first three rules are standard [25],
and are even suitable for unifying to row expressions that list ex-
actly the same components with exactly the same ordering in each.
But the forth rule, (row), is needed to deal with the more general
problems of row unification.

To understand how this rule works, consider the task of unifying
two rows {a | r} and {a′ | r′}, where a, a′ are distinct address
spaces, and r, r′ are distinct row variables. Our goal then is to find
a substitution S that:

{a | Sr} = S{a | r}
= S{a′ | r′}
= {a′ | Sr′}

Clearly, the row on the left includes an a address space, while the
last row on the right include an a′ address space. If these two
types are to be equal, then we must choose the substitution S so
that it will ‘insert‘ the missing fields into the two rows r′ and r,
respectively. In this particular case. then we can choose:

S = [{a′ | r′′}/r, {a | r′′}/r′]
where r′′ is a new type variable.

More generally, we will say that a substitution S is an inserter
of a into r ∈ Crow if a ∈ Sr. S is a most general inserter of a
into r if ever such an inserter can be written in the form RS, for
some substitution R. The rules in Figure 7 define an algorithm for
calculating inserters of a into r ∈ Crow.

(idV ar) a
[{a | r′}/r
∈ r r′ new

(inTail)

a
I
∈ r a 6= a′

a
I
∈ {a′ | r}

(inHead) a
id
∈ {a | r}

Figure 7. Kind-perserving insertion

The important properties of unification and insertion—both
soundness and completeness—are captured in the following result:

THEOREM 4.1. The unification (insertion) algorithm defined by
the rules in Figure 6 (Figure 7) calculates most general unifiers
(inserters) whenever they exist. The algorithm fails precisely when
no unifier (inserter) exists.

The proof is a straightforward variant of that given by Gaster [6],
describing his system of records and variants. It is important to
note that the unification algorithm is simplified, when compared to
Gaster’s original work, due to address space components not being
labeled.

4.2 A Type inference algorithm
Given the unification algorithm described in the previous section,
we can use an extended version of the type inference algorithm
of qualified types [14] as a type inference algorithm for the type
system presented in this paper. The definition of the algorithm
is given in Figure 8. Following Rémy [24], these rules can be
understood as an attribute grammar; in each typing judgement
P |TΓ `W e : τ , the type assignment Γ and the term e are
inherited attributes, while the predicate assignment P , type τ , and
substitution T are synthesized. The (Program)W rule uses an
auxiliary function to calculate the generalization of a qualified type
ρ with respect to a type assignment Γ. This is defined as follows:

Gen(Γ, ρ) = ∀αi.ρ, where{αi} = TV (ρ)\TV (Γ).

In general the rules are straightforward modifications of the origi-
nal typing rules given in Figure 5 for type inference. For example,
the rule (IF) has additional hypothesis that perform unification on
the inferred types of the condition and two alternatives, and appli-
cations of the synthesized substitutions, but otherwise is the same
as the original typing rule. As such the type inference algorithm is
both sound and complete with respect to the original typing rules.

THEOREM 4.2. The algorithm described by the rules in Figure 8
can be used to calculate the principal type for a given declaration d
under the assumptions Γ. The algorithm fails precisely when there
is no typing for d under Γ.

The proof is again straightforward and follows directly from
the earlier work of Gaster [6] and more generally Jone’s system
of Qualified Types [13].

5. Compilation
In previous sections we described informally how programs involv-
ing operations on address spaces can be compiled and executed
using a language that adds extra parameters to supply appropriate
offsets. This section shows how this process can be formalized, in-
cluding the calculation of address space IDs.

5.1 Compilation by translation
In the general treatment of qualified types [13], programs are com-
piled by translating them into a language that adds extra parameters
to supply evidence for predicates appearing in the types of the val-
ues concerned. The whole process can be described by extending
the typing rules to use judgements of the form:

P |Γ ` e e′ : σ

which include both the original source term e and a possible trans-
lation e′. A further change here is the switch from predicate sets to
predicate assignments; the symbol P used above represents a set of
pairs (v : π) in which no variable v appears twice. Each variable v
corresponds to an extra parameter that will be added during com-
pilation; v can be used whenever evidence for the corresponding
predicate π is required in e′.

In the current setting, predicates are expressions of the form
(r\a) whose evidence is the address space ID for the particular
a. The calculation of evidence is described by the rules in Figure 9,
which are direct extensions of the earlier rules for predicate en-

P ∪ {v : π} |= v : π

P |= e : (r\a)

P |= m : {a′ | r}\a m =

{
e, a < a′

e+ 1, a′ < a

P |= () : ({}\a)

Figure 9. Predicate entailment for rows.

tailment that were given in Figure 4. Intuitively, a derivation of
P |= e : π tells us that we can use e as evidence for the predi-
cate π in any environment where the assumptions in P are valid.
The second rule is the most interesting and tells us how to find the
address space ID in a row {a | r}:
• If a comes before a′ in the total ordering, <, on address space

IDs, then the required ID will be the same as the ID e of a in r.
• But, if a′ comes before a, then we need to use an ID of e+ 1 to

account for the address of a′.

In general, these rules calculate address IDs that are either a
fixed natural number, or an addition from a natural number and one
of the variables in P .

For reasons of space, we omit the complete description of trans-
lation from this paper, and instead focus on describing the two rules
that account for the user and introduction of address space ID pa-
rameters. The first of these is a variation on function application:

P |Γ ` e e′ : π ⇒ ρ P |= e′′ : π

P |Γ ` e e′ e′′ : ρ

[EMPTY]
{}|{} `W ; : void

P |TΓ `W e : τ Q|T ′TΓ `W z : τ ′

[RET]
T ′P ∪Q|T ′TΓ `W return e; z : τ

P |TΓ `W e : τ ′ Q|T ′TΓ `W z : τ
[EXPR]

T ′P ∪Q|T ′TΓ `W e; z : τ

(x : ∀αi.P ⇒ τ) ∈ Γ βinew
[VAR]

[βi/αi]P |Γ `W x : [βi/αi]τ

P |TΓ `W e : τ ′′ Tτ ′′
U∼ τ Q|T ′TΓ, v : τ `W z : τ ′

[VDECL]
U(T ′P ∪Q)|UT ′TΓ `W τ v = e; z : τ ′

P |TΓ `W e : τ τ
U∼ bool Q|T ′TΓ `W z0; z : τ ′ Q′|T ′′T ′TΓ `W z1; z : τ ′′ Uτ ′

U′
∼ Uτ ′′

[IF]
U ′U(P ∪Q ∪Q′)|U ′UT ′′T ′TΓ `W if (e) {z0} else {z1}; z : U ′Uτ ′′

P |TΓ `W e : τ τ
U∼ bool Q|T ′TΓ ` z : τ ′ Uτ ′

U′
∼ void Q′|T ′′T ′TΓ ` z′ : τ ′′

[WHILE]
U ′U(P ∪Q ∪Q′)|U ′UT ′′T ′TΓ ` while (e) {z}; z′ : τ ′′

P |TΓvi , vi : αi `W b : τ αi new
[FCN]

P |TΓ `W τ x(vi) {b} : Tαi → τ

P |T ′Γ `W e : (ti →) Q0|ToT ′Γ `W e0 : τ0 ... Qn|(T0...Tn−1)T ′Γ `W en : τn

t0
U0∼ τ0 ... (Un−1(...(U0))tn

Un∼ Un−1(...(U0))τn → α α new
[APP]⋃

((Un...U0)(T0...TnT
′)P,Qi)|(Un...U0)(T0...TnT

′)Γ `W x(ei) : (Un...U0)α

Pi|TiΓ `W fi(vi){b} : τi σi = Gen(TiΓ, Pi ⇒ τi) P ′|T ′(T0...TnΓfi , fi : σi) `W b′ : τ ′ τ ′
U∼ void

[PROGRAM]
P ′|T ′(T0...Tn)Γ `W fi(vi){bj} main(){b′} : Uτ ′

Figure 8. Type inference algorithm W.

This tells us that we need to supply suitable evidence e′′ in the
translation of any program whose type is qualified by a predicate
π. The second rule is analogous to function abstraction, and allows
us to move constraints from the predicate assignment P into the
inferred type5:

P ∪ {v : π}|Γ ` e e′ : ρ

P |Γ ` e λv.e′ : π ⇒ ρ

These two rules are direct extensions of the (⇒ E) and ⇒ I) in
Figure 5, and combined with simple extensions of the other rules
there, we can construct a translation for any term in MiniAS.

6. Down casting
As of today the OpenCL 1.x specification does not allow for cast-
ing between pointers of different address spaces, it seems to make
little sense when address spaces are disjoint. With the introduction
of generic address spaces the ability to up cast to generic address
space is built into the type system by default. However, the ability
to down cast (i.e. translate from a generic address space to a special-
ized one) may also useful. Moreover combining down casting with
the ability to test if a generic address pointer is in a given special-
ized address space allows one to call specialized library functions.

5 For simplicity we have “cheated” a little by introducing the use of lambda
abstraction not defined in MiniAS. However, in practice evidence abstrac-
tion will only appear at function application and so an implementation
would just add the additional argument to the associated function and thus
there is no additional overhead or complexity.

For example, consider the case when a 3rd party library contains
the specialized functions:

int foo_local(local * int);
int foo_global(global * int);

but does not contain a generic version. Using a cast operator sim-
ilar to C++’s dynamic_cast—that either casts a generic address
space to the specified address space, if it indeed matches the actual
address space, or returns NULL—it is straightforward to define a
generic version of foo:

int foo(generic * int p)
{

if ((global int * gptr =
dynamic_cast<global int *>(p)) != NULL) {
return foo_global(gptr);

}
else if ((local int * lptr =

dynamic_cast<local int *>(p)) != NULL) {
return foo_local(lptr);

} else {
return -1;

}
}

dynamic_cast<_>(_) can be assigned the type:

∀α, r.r\a⇒ ASpace {a|r} ∗ α→ a ∗ α

with specific versions implemented for each value of a, i.e. global,
local, and private. For example after translation pseudo code for
the global address space version might be defined as:

dynamic_cast_global(idx, ptr)
{

if (idx == 0) {
return ptr;

} else {
return NULL;

}
}

Of course, a compiler targeting specific hardware that supports
generic address spaces and instruction set that defines the ability
to convert two and from specialized address spaces could generate
code directly to these operations. For example, AMD’s Heteroge-
neous System Architecture (HSA) [1, 26] supports a selection of
memory segments, most of which are disjoint (similar to OpenCL)
and a flat address space that subsumes all others. HSA’s Input Lan-
guage (HSAIL) is a low-level device independent ISA supporting
the following operations to translate to and from generic (flat) ad-
dress spaces (segments):

• Test if a flat pointer is in segment:

segmentp_segment_b1 dst, src

• Convert flat pointer to segment:

ftos_segment_type dst, src

• Convert segment pointer to flat:

stof_segment_type dst, src

Assuming a set of compiler builtin functions mapping directly
to HSAIL operations, then dynamic cast might be implemented
directly as:

dynamic_cast_global(ptr)
{

if (segmentp_global(ptr)) {
return ftos_segment_i32(ptr);

} else {
return NULL;

}
}

As HSAIL directly supports a notion of generic address space, then
as discussed in Section 2 the address space ID argument has been
elided by the compiler with no additional performance cost, even
in the presence of dynamic typing.

7. Related work
To our knowledge we are the first to propose formalizing OpenCL’s
address spaces and provide a complete type inference system. Of
course, there has been other approaches to abstracting user man-
aged memories and also in the area of type inference for type qual-
ifiers. In this section we discuss work most relevant to ours.

7.1 A theory of qualifiers
We are not the first to study type inference for type qualifiers for
C and the most relevant is the work of Foster et al [5]. They de-
scribe a system that is capable of inferring static type qualifiers, in-
cluding the ability to have polymorphic functions parameterized by
type qualifiers. However, their system is limited to type qualifiers
that can be uniquely determined at compile time. They provide no
system for dynamically selecting between different types of quali-
fiers as is necessary in the general case and in particular for address
space load and store operations.

Forster et al system has the goal to enforce and discover static
invariants that can help the compiler produce more efficient code
and rule out unintended program errors. Their system does pro-
vide the ability to refine a types qualification, i.e. add const to a
pointer, but lacks the capability for the same value to have multiple
alternatives for a particular qualifier. In fact their sub-type relation
is closely related to Gaster and Jones’ [9] extensible record type
which introduces a similar lattice type structure.

Additionally Foster et al’s system is based on a complicated sys-
tem of sub-typing constraints which can often lead to complicated
types which are difficult for developer to write down in practice.
Our system, on the other hand, has simple types which can be eas-
ily written down by the developer, although it is not required.

One area of future work would be to incorporate a variant of
Gaster and Jones’ extensible records into our system to handle the
qualifiers of Foster et al. In particular, as such as system would
support our compilation scheme, then they might be interesting
qualifiers not expressible in Foster et al’s system.

7.2 OpenCL C++
OpenCL C++ [8] supports OpenCL C address spaces but comes
with the additional complication of a classes this. The this pointer
complicates matters as it is often left implicit but effects how
particular member functions will behave. For example, consider a
classes copy constructor which may be implicitly generated by the
compiler from a particular use case. In general, the copy constructor
is of the form:

Foo(Foo & rhs);

But for OpenCL C++, Foo& must live in an address space, which if
implicitly defined, like the copy constructor itself, must be inferred
at compile time. For this OpenCL C++ uses a subset of the type
inference algorithm formalized in this paper, whose address spaces
are all uniquely inferred at compile time. In developing OpenCL
C++ AMD initially implemented an ad-hoc type inference algo-
rithm for address spaces, which time and time again caused pain in
the discovery of corner cases that had not been originally consid-
ered. This was only conflated with the move to C++11 [11], which
has its own inference rules for auto and decltype. Motivated by
these short comings in the original implementation of OpenCL C++
and a desire to add generic address spaces to OpenCL C we were
motivated to develop the system described in this paper.

7.3 Heterogeneous Parallel Pattern
The GPGPU programming model Heterogeneous Parallel Patterns
(HPP) [7] is a braided parallel model, supporting both task and
data-parallelism, that is embedded into C++11. Like OpenCL C++
it supports a device programming language that is designed to
target GPUs and other accelerator like devices. However, unlike
OpenCL C++ it does not expose explicitly managed address spaces
and instead it supports a PGAS style globally shared memory
model combined with a hierarchical array abstraction, called Dis-
tArray. Like address spaces DistArray is intended to allow devel-
opers to explicitly manage data locality, however, this is achieved
via describing a hierarchical nesting of regions bound on use.

A key difference when compared to our system is that data
placement for HPP’s DistArray is dynamically determined by the
runtime, while our system is based on static type inference. Of
course, in the case that an address space cannot be uniquely deter-
mined at compile time our system still requires a runtime parameter
to determine which memory to read and write from. In developing
our system we were constrained to design a system that fitted with
an existing programming language (OpenCL), and did not have the
freedom to design a language without address spaces.

8. Conclusion
We have described a flexible type system for generic (polymorphic)
address spaces with effective type inference algorithm and compi-
lation method. A prototype implementation has been written as a
standard alone compilation flow allowing developers an researchers
alike to study the algorithm in isolation from a more complicated
system, such as OpenCL. An implementation of our algorithm has
also been implemented as part of AMD’s APP SDK, which sup-
ports a variant of OpenCL C++. Our experience to date shows that
these implementations work well in practice. Furthermore, generic
address spaces have been proposed as a future feature of standard
OpenCL C and the algorithm proposed in this paper can form a
foundation for this development [23].

More generally our system can form the basis of an address
space system for an variant of Embedded C and to our knowledge
we are the first to propose such as system. Such a system could be
used as the foundation to extend Embedded C to C++, similar to
OpenCL C++’s extension to OpenCL C, and could prove useful
for future embedded system development. Without similar type
inference system for address spaces it is hard to see how Embedded
C++ could be useful in practice.

The above extensions to OpenCL are, at present, restricted to
compile time specialization, i.e. all predicates must be discharged
statically otherwise it’s a compile time error. Our system is more
general and provides the ability to support a dynamic generic ad-
dress space, via the introduction of address space IDs that are
passed around at runtime and used to dynamically select the spe-
cific address space operation. While this could have a potential run-
time impact we highlight this is only observed when dynamic fea-
tures are used by the developer. Moreover, we demonstrated that if
the underlying system directly supports generic address spaces, as
per AMD’s HSAIL or Nvidia’s Fermi, then the additional address
space IDs can be elided, without any additional runtime overhead.

One interesting area of future work is to consider providing a
formal type system for something like HSAIL, including handling
of its segments and flat address space. The system proposed in this
paper may in turn be an interesting place to begin that work. For
one it describes the semantics of address spaces (i.e. segments)
but moreover Jones has shown that more generally the theory of
qualified types can be used to statically type and verify intermediate
languages such as Java’s bytecode [15].

9. Acknowledgements
The authors would like to thank Mike Chu of AMD and Garret
Morris of Portland State University for their feedback during the
development of this work.

References
[1] Advanced Micro Devices (AMD). HSA Programmer’s Reference

Manual. http://developer.amd.com, 2012.

[2] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheri-
tance as implicit coercion. Inf. Comput., 93(1):172–221, July 1991.

[3] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-
bounded polymorphism for object-oriented programming. In Proceed-
ings of the fourth international conference on Functional program-
ming languages and computer architecture, FPCA ’89, pages 273–
280, New York, NY, USA, 1989. ACM.

[4] L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’82, pages 207–212,
New York, NY, USA, 1982. ACM.

[5] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In
Proceedings of the ACM conference on Programming language design

and implementation, PLDI ’99, pages 192–203, New York, NY, USA,
1999. ACM.

[6] B. R. Gaster. Records, variants, and qualified types. PhD thesis,
University of Nottingham, August 1998.

[7] B. R. Gaster and L. Howes. Can GPGPU programming be liberated
from the data-parallel bottleneck? IEEE Computer, August 2012.

[8] B. R. Gaster and L. Howes. OpenCL C++. In Sixth Workshop on
General Purpose Processing Using GPUs (GPGPU 6), 2013.

[9] B. R. Gaster and M. P. Jones. A Polymorphic Type System for
Extensible Records and Variants. Technical Report NOTTCS-TR-96-
3, Department of Computer Science, University of Nottingham, Nov.
1996.

[10] R. Hindley. The principal type-scheme of an object in combinatory
logic. Trans. Amer. Math. Soc, 146:29–60, December 1969.

[11] ISO/IEC. Progrmming languages C++. ISO/IEC 14882:2011(E),
2011.

[12] ISO/IEC. Progrmming languages Embedded C. ISO/IEC DTR 18037,
2011.

[13] M. P. Jones. A theory of qualified types. In Symposium proceedings on
4th European symposium on programming, ESOP’92, pages 287–306,
London, UK, UK, 1992. Springer-Verlag.

[14] M. P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. In Proceedings of the conference on
Functional programming languages and computer architecture, FPCA
’93, pages 52–61, New York, NY, USA, 1993. ACM.

[15] M. P. Jones. The functions of java bytecode. In In Workshop on the
Formal Underpinnings of the Java Paradigm, 1998.

[16] S. P. Jones, editor. Haskell 98 Language and Libraries: The Revised
Report. http://haskell.org/, September 2002.

[17] M. Mantor and M. Houston. AMD Graphics Core Next: Low power
high performance graphics and parallel compute. In High Performance
Graphics Conference, Hot3D, 2011.

[18] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978.

[19] J. G. Morris and M. P. Jones. Instance chains: type class programming
without overlapping instances. In Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP
’10, pages 375–386, New York, NY, USA, 2010. ACM.

[20] Nvidia. NVIDIAs Next Generation Cuda Compute Architecture:
Fermi. Whitepaper, 2010.

[21] NVIDIA Corporation. NVIDIA CUDA programming guide, version
4.2, 2012.

[22] OpenCL Working Group. The OpenCL specification, version 1.2,
revision 16. Khronos, 2011.

[23] OpenCL Working Group. private communication, 2012.
[24] D. Rémy. Type inference for records in a natural extension of ml. The-

oretical Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design, 1994.

[25] J. A. Robinson. A machine-oriented logic based on the resolution
principle. J. ACM, 12(1):23–41, Jan. 1965.

[26] N. Rubin and B. R. Gaster. An overview of HSAIL. In AMD Fusion
developer summit, 2012.

