
FORMALIZING ADDRESS SPACES
WITH APPLICATION TO CUDA,
OPENCL, AND BEYOND

Benedict R. Gaster* and Lee Howes
AMD

* author is now at Qualcomm

2 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

DATA LOCALITY

Data-locality plays an important role in an applications performance, e.g.:

 NUMA
 Caches (temporal and spatial)
 Address Spaces

the subject of this talk

3 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

ADDRESS SPACES

Address spaces explicitly manage where data lives during execution

Originally standardized in Embedded C

Popularized in modern GPGPU languages:
 CUDA (not formalized as part of the type system)
 OpenCL (formalized as part of the type system)

4 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPENCL 1.X MEMORY HIERARCHY

5 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPENCL - SCALE VECTOR

kernel void vscale(
 global int * C,
 global int * A,
 const global int * S)

{
 C[get_global_id(0)] = A[get_global_id(0)] * S[get_group_id(0)];

}

6 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPENCL ADDRESS SPACES

All pointers in an OpenCL program must be assigned an address space

7 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPENCL ADDRESS SPACES

Lacks the ability to parameterize over address spaces

8 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

ABSTRACT OUT SCALING TO A HELPER FUNCTION

int scale(global int * A, global int * S);

9 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

SCALE VECTOR USING ABSTRACTION

kernel void vscale(
 global int * C,
 global int * A,
 const global int * S)

{
 C[get_global_id(0)] = scale(&A[get_global_id(0)], &S[get_group_id(0)]);
}

10 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPTIMIZE SCALING CONSTANTS TO ON-CHIP MEMORY

kernel void vscale(
 global int * C,
 global int * A,
 constant int * S)

{
 C[get_global_id(0)] = scale(&A[get_global_id(0)], &S[get_group_id(0)]);
}

11 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

OPTIMIZE SCALING CONSTANTS TO ON-CHIP MEMORY

kernel void vscale(
 global int * C,
 global int * A,
 constant int * S)

{
 C[get_global_id(0)] = scale(&A[get_global_id(0)], &S[get_group_id(0)]);
}

No longer type checks, i.e.

 constant ~ global

is not valid…

U

12 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

GENERIC ADDRESS SPACE

Introduce an address space, generic, that subsumes all others

13 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

GENERIC ADDRESS SPACE

privatelocalconstantglobal

generic

14 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

SCALE DEFINED IN TERMS OF GENERIC

int scale(generic int * A, generic int * B);

15 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

GENERIC BECOMES THE DEFAULT ADDRESS SPACE

int scale(int * A, int * B);

16 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

DOES GENERIC REQUIRE HARDWARE SUPPORT?

global int * g_ptr;

int x = *g_ptr;

int * ptr = g_ptr;
x = *ptr;

local int * l_ptr;

 x = *l_ptr;

g_ptr = l_ptr;
x = *g_ptr;

int * g_ptr __attribute__(global)

int * ptr __attribute__(generic)
int * l_ptr __attribute(local)

int x;

x = load_global(g_ptr);
ptr = g_ptr;

x = load_generic(g_ptr); // global mem load

x = load_local(l_ptr);
g_ptr = l_ptr;

x = load_generic(g_ptr); // local mem load

OpenCL C + generic Pseudo IR + generic

17 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

CAN’T THE COMPILER DEDUCE WHAT TYPE OF LOAD GENERIC IS PERFORMING?

 Maybe using Hidley-Milner type inference [1,2]?

18 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

SADLY

In general it is not possible!

19 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

EXAMPLE WHY HIDLEY-MILNER FAILS

void foo(int *);
kernel void bar(global int *g, local int *l)
{
 generic int * tmp;
 if (get_global_id(0) % 2) {
 tmp = g;
 } else {
 tmp = l;
 }
 foo(tmp);
}

20 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

GENERICS CAN BE MULTIPLE THINGS AT THE SAME TIME!

tmp is global and local for different work-items at the point foo(tmp)

21 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

GENERICS ARE VARIANT (OR SUM) TYPES

global + local int *

22 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

HOWEVER NOTE - FOR A GIVEN WORK-ITEM

A pointer instance within the generic address space can only point to
one disjoint address space:

 global
 constant
 local
 private

 at any given time.

23 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

THIS PAPER

Describes a type system that:

combines the parametric polymorphism of generics
with variant address spaces

defines a type-inference algorithm that can infer parametric polymorphic
variant address spaces types, for all valid programs, or fails

defines a runtime implementation for generic address:

zero overhead for targets with hardware support for generic
overhead only in the presence of indirect functions with generic arguments

24 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

QUALIFIED TYPES

Our system is based on the general theory of qualified types [3]
Extended with the notion of variants [4]

class Eq a where
 (==) :: a -> a -> a

instance Eq Int where
 x == y = eqInt x y

(==) : forall a . Eq a => a -> a -> a

eqInt : Int -> Int -> Int

Originally developed in the context of Haskell

25 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

ADDRESS SPACE ARE DEFINED IN TERMS OF ROWS AND A CONSTRUCTOR

 {a1, ..., an | r} = {a1 | ... { an | r } ... }
 {a1 , ..., an } = {a1 | ...{an | {}}...}

A pointer of type τ in some address space a and some yet to be determined
address spaces ranged over by r, is represented by the type:

 ASpace {a | r} τ ∗

26 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

DEFINITION (INJECTION) WITH INITIALIZER

Generic address space:

 τ * x :: r => size_t → Aspace r τ ∗

 int * x = 0xffffffff;

Disjoint address space a:

 a τ * :: (r \ a) ⇒ size_t → Aspace {a | r } τ ∗

 global int * x = NULL;

27 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

ASSIGNMENT (INJECTION)

_ = _ :: (r \ a) ⇒ Aspace { a | r } τ ∗

 → Aspace { a | r } τ ∗
 → Aspace { a | r } τ ∗

 global int * g_ptr; // disjoint definition (injection)

 int * g; // generic definition (injection)
 int * ptr = g_ptr; // assignment (injection)

28 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

ASSIGNMENT (EMBEDDING)

_ = _ :: (r \ a) ⇒ Aspace r τ ∗
 → ASpace{a | r } τ ∗
 → ASpace{ a | r } τ ∗

global int * g_ptr; // disjoint definition (injection)
local int * l_ptr; // disjoint definition (injection)
int * ptr; // generic definition (injection)

if (…) {
 ptr = g_ptr; // assignment (embedding)
} else {
 ptr = l_ptr; // assignment (embedding)
}

29 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

LOAD (STORE IS SIMILAR)

ld(_) :: ({} \ a) ⇒ ASpace{ a } τ ∗ → τ

lda(_,_) :: (r \ a) ⇒ (ASpace{ a } τ ∗ → τ) → ASpace{ a | r } τ → τ

ld(_,_,_,_) :: r \ a => (ASpace{ global} τ ∗ → τ)

 → (ASpace{local} τ ∗ → τ) →
 (ASpace{private} τ ∗ → τ) →
 ASpace { r | a } τ ∗
 → τ

30 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

EXAMPLE

kernel void x(

 global * int g,
 local * int l,

 int value)
{

 int * var = 0;
 if (value % 2) {

 var = g;
 } else {

 var = l;
 }

 *g = *var;
}

kernel void x(

 ASpace { global } * int g,
 ASpace { local } * int l,

 int value)
{

 ASpace r int * var = 0;
 if (value % 2) {

 var = g;
 } else {

 var = l;
 }

 store_global(g,
 ld(var, ld_global, ld_local, ld_private));

}

31 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

THE DETAILS

The paper provides details of

1.  the type inference algorithm

2.  how predicates are used as ‘evidence’ to determine the address for a

particular instance of a value within the generic address space domain

32 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

CONCLUSION

Formalized the notion of generic address spaces for OpenCL, Cuda, etc.

Naturally extends to languages such as C++

As seen in the earlier OpenCL C++ paper

Formalizes Embedded C’s notion of generic address space
Provides the ability to extend embedded C to C++

Type inference algorithm has potentially many other applications:
e.g. scalar/vector usage of OpenCL C programs

33 | Formalizing Address Spaces with application to Cuda, OpenCL, and beyond | March 16, 2013

REFERENCES

[1] J. R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, December 1969.

[2] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System Sciences,
August 1978.

[3] M. P. Jones. Qualified Types Theory and Practice. Distinguished Dissertations in Computer Science.
Cambridge University Press, 1994.

[4] Benedict R. Gaster. Records, variants, and qualified types. PhD thesis, University of Nottingham, August
1998.

