
OpenCL C++

Benedict R. Gaster
Advanced Micro Devices, 1 AMD, Sunnyvale, CA,

USA
benedict.gaster@amd.com

Lee Howes
Advanced Micro Devices, 1 AMD, Sunnyvale, CA,

USA
lee.howes@amd.com

Abstract
With the success of programming models such as Khronos’ OpenCL,
heterogeneous computing is going mainstream. However, these
models are low-level, even when considering them as systems pro-
gramming models. For example, OpenCL is effectively an extended
subset of C99, limited to the type unsafe procedural abstraction
that C has provided for more than 30 years. Computer systems
programming has for more than two decades been able to do a lot
better. One successful case in point is the systems programming
language C++, known for its strong(er) type system, templates, and
object-oriented abstraction features.

In this paper we introduce OpenCL C++, an object-oriented pro-
gramming model (based on C++11) for heterogeneous computing
and an alternative for developers targeting OpenCL enabled de-
vices. We show that OpenCL C’s address space qualifiers, and by
implication Embedded C’s, can be lifted into C++’s type system. A
novel application of C++11’s new type inference features (auto/de-
cltype) with respect to address space qualifiers allows natural and
generic use of the this pointer. We qualitatively show that OpenCL
C++ is a simpler and a more expressive development platform than
its OpenCL C counter part.

1. Introduction
... justification for Church’s calculus, and allows the
’machines’ which generate computable functions to be
replaced by the more convenient λ-definitions.

Alan Turing

At the beginning of modern computer science, Turing had al-
ready noted that notation and “simpler” abstractions would play a
major role in defining successful programming models. In this pa-
per we address the syntactic and semantic limitations of current
GPGPU programming models, without introducing yet another en-
tirely new compiler and runtime but rather incrementally extending
the current capabilities of OpenCL.

Following the single-core and multi-core revolutions there is
now a new emerging era of computing: heterogeneous systems
combining multi-core CPUs, many-core GPUs, and other acceler-
ator devices. These are no longer just oddities to discuss in archi-
tecture classes, they are the future! Many existing applications can
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be naturally decomposed so that they can be executed in parallel on
such systems.

There has been early success in addressing the issue of pro-
gramming models for heterogeneous computing, c.f. Khronos’
OpenCL [16] and NVIDIA’s CUDA [15]. However, these systems
are low-level, even when considering them as systems program-
ming models. They are effectively extended subsets of C99, limited
to the type unsafe procedural abstraction that C provides. Cuda has
addressed these limitations somewhat but in an ad-hoc and propri-
etary setting, allowing them to avoid the portability constraints that
OpenCL must cater for.

OpenCL was defined with portability in mind and the ability to
support many different host and device platforms. While OpenCL
can provide excellent performance, programming in OpenCL is
long winded, at best, and down right difficult at worse. For example,
to simply enqueue a kernel to a device the programmer must: select
a platform; select a device and create a context; allocate memory
objects; copy data to device; create and compile programs; create a
kernel; create a command queue; enqueue the kernel for execution;
and finally copy data back from device.

Figure 1 shows the OpenCL API calls required to implement
vector addition, the “Hello World” of data-parallel computing. 30
lines of OpenCL C API code just to execute a single kernel on
two input buffers and copy the result back to host memory! Com-
pare this with the 7 lines of OpenCL C++ API code, as shown
in Figure 2. It is worth noting that the original OpenCL C code
does not contain any error handling code, all this would need to be
added, while the OpenCL C++ implementation gets error handling
for “free” by using exceptions as well as basic type safety and re-
quires no additional modifications. The OpenCL C++ device code
gains from static safety features of C++, while not yet supporting
dynamic features such as exceptions due to hardware limitations.

Three novel aspects of OpenCL C++ are:

• A type inference system for infering address space usage, al-
lowing developers to mix explicit and implicit use of address
space qualifers.

• The ability to share pointer based data-structures between the
host and device. Thus enabling developers to target systems
with and without a single virtual memory system between the
host and device, from a single source base.

• The exploration of enhancing OpenCL C++’s pointers through
the decoupled Access/Execute (Æcute—pronounced ”acute”)
programming model, which allows the programmer to express
explicitly both the memory access pattern and the execution
schedule of a computation kernel [6]. The OpenCL C++ pro-
grammer can annotate pointers, describing their access pattern.

Designing OpenCL C++ we focused on achieving performance
and productivity for heterogeneous programming development. In
particular we tried to balance the following two goals:



clGetPlatformIDs(1, &platform, NULL);

cl_context = clCreateContextFromType(platform, 

CL_DEVICE_TYPE_DEFAULT, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, 

                                        NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, 

NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL, 

                                         NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

                                 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

                                 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], 

                                  sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Figure 1. OpenCL C Host API Code for Vector Add

    
std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd = 
            make_kernel<Buffer, Buffer, Buffer>(Program(program_source), "vadd");

memobj[0]  = Buffer(CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,  sizeof(float) * n, srcA);
memobj[1]  = Buffer(CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,  sizeof(float) * n, srcB);
memobj[2]  = Buffer(CL_MEM_WRITE_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]);

enqueueReadBuffer(memobj[2], CL_TRUE, 0, sizeof(float) * n,   dest);

Figure 2. OpenCL C++ Host API Code for Vector Add

Safety. To aid productivity OpenCL C++ is intended to be safe.
Due to performance requirements and choosing C++ as the base
language the set of guarantees are limited compared to some par-
allel languages, e.g. X10 [3]. In particular, OpenCL C++ does not
address illegal pointer references, including NULL pointers, and
buffer overflows. However, when possible, types are used to pro-
vide static guarantees and initialization errors are ruled out.

Scalability. OpenCL C++ is designed to support development of
scalable applications, i.e. the addition of computational resources
should lead to an increase in performance. As OpenCL C++ is de-
signed for heterogeneous style architectures, additional computa-
tional resources include CPU, GPUs, and other compute devices.

Earlier work on OpenCL C++’s implementation has provided
a “real” product, one that is already widely used. Many of the ad-
vances described in this paper, e.g. C++ kernel language, defaults,
and shared pointers, have recently been released as part this prod-
uct. Still some other aspects are still in the research and develop-
ment cycle, in particular our notion of separating data-access from
execution is not yet available in production form.

The remaining sections of this paper are; Section 2 introduces
the main features of OpenCL C++ programming model; Section 3
expands on the Æcute programming model for pointer types; Sec-
tion 4 describes the OpenCL C++ Kernel language; Section 5 gives
an overview of OpenCL C++’s implementation; Section 6 describes
the impact on performance compared to the OpenCL C API and a
measure of code complexity; and finally Section 7 concludes.

A note to the reader; this paper describes, among other things,
syntactic constructs for extending OpenCL with C++ and address
spaces. A companion paper [5], also at this conference, describes a
formal foundation for address space usage and a system for address

space inference. It is the intention that these two papers be read
together.

2. OpenCL C++ Programming Model
OpenCL C++ is defined as three parts, called models, that can be
summarized as follows:

• Platform model: Specifies that there is one processor coordinat-
ing execution (the host) and one or more processors capable of
executing OpenCL C++ kernels (the devices). OpenCL C++ de-
fines an abstract hardware model, described below, that is used
by programmers when writing kernels and functions that exe-
cute on devices.

• Execution model: Defines how the OpenCL C++ environment
is configured on the host and how kernels are executed on
the device. This includes device capabilities and a concurrency
model used for kernel execution on devices. The execution
model is outlined in Section 2.2.

• Memory model: Defines an abstract memory hierarchy and set
of visibility guarantees that kernels may rely on, regardless of
the actual underlying memory architecture. OpenCL C++ keeps
the current OpenCL memory model, but adapts it to allow im-
plicit use of address spaces with respect to the this pointer.
In practice, we believe that the OpenCL memory model is in-
complete and should be generalized to adopt C++11’s memory
model [9]. We have made progress on this front but leave a de-
tailed description for future work.

2.1 Platform Model
In the platform model, there is a single host that coordinates execu-
tion on one or more devices. Platforms can be thought of as vendor-
specific implementations of the OpenCL C++ API. The devices that
a platform can target are thus limited to those with which a par-
ticular implementation knows how to interact with. For example,
if implementation A’s device(s) is chosen, it cannot communicate
with implementation B’s device(s). This differs from the OpenCL
model in that no explicit platform, or context for that matter, are
required thus simplifying a common OpenCL programming idiom.
The more relaxed usage is handled by the introduction of defaults,
described below. It is still possible for the programmer to explicitly
manage the platforms, contexts, devices, and command queues, but
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Figure 3. OpenCL C++’s Platform Model

it is not required. It was deemed vital to maintain access to this low
level functionality in an API targeted at high performance program-
ming.

The platform model presents an abstract device architecture that
programmers target when writing kernels that OpenCL C++ will
execute. An implementation maps this abstract architecture to the
physical hardware.

The OpenCL C++ platform model defines a device as an array
of compute units, with each compute unit functionally independent
from the rest. Compute units are further divided into processing ele-
ments. Figure 3 illustrates this hierarchical model. It is important to
note that for OpenCL C++’s pointers this model is, by default, im-
plicit and managed by the OpenCL C++ runtime. For compatibility
with OpenCL, conventional buffers are still managed explicitly.

2.2 Execution Model
As described above the OpenCL C++ platform model defines the
roles of the host and devices and provides an abstract hardware
model for devices.

2.2.1 Host-Device Interaction
Kernels intended for execution on the device are marked with
kernel, appearing before the return type, which like OpenCL
must be void. Kernels are written in a super set of C++11 and are
described in detail in Section 4.

A simple OpenCL C++ kernel, that doubles its input, might be
defined as:

kernel void addSelf(global Pointer<int> input)
{
*(input+get_global_id(0)) *= 2;

}

OpenCL C++ kernels are compiled as per the OpenCL online
compilation model, although it is also possible to support a type-
safe offline model too.

2.2.2 Work-items
Like OpenCL, OpenCL C++ device programs assume an explicitly
parallel model where a kernel describes the execution of a single
lane of execution called a work-item. When a kernel starts execu-
tion, many work-items may start up, each running the kernel. (A
kernel is invoked with a grid-based enqueue operation, described
later).

Work-items are executed concurrently, although there is no
guarantee that they will execute in parallel and no requirement
for preemption.

For each dimension i, the set of IDi are drawn from the set [0,
1, 2, ..., maxii−1 ]. The flattened ID of a work-item is defined by:

ID = ID0 + ID1 * max0 + ID2 * max0 * max1

where:

Figure 4. Range, Work-groups, and Work-items in OpenCL C++

- ID0 is work-item in dimension 0
- ID1 is work-item in dimension 1
- ID2 is work-item in dimension 2
- max0 is the extent of the execution GRID

in dimension 0
- max1 is the extent of the execution GRID

in dimension 1

Work-items start execution of work-items in flattened ID order.

2.2.3 Work-Groups
Work-items can be organized into work-groups, of size 1 or greater.
Using the notion of a distributed array, discussed later, work-items
within a work-group can communicate and share data.

Every work-group has a multi-dimensional index called a work-
group index. The work-group index is calculated by dividing each
component of the work-item’s absolute ID by the corresponding
size of the work-group.

Each work-group has a flattened ID (similar to that of a work-
item):

work-group-id = floor(work-item-id / work-group-size)

where:

work-group-size = work-group-size-dim0 *
work-group-size-dim1 *
work-group-size-dim2

Each work-item has a unique identifier called the work-item ID
within the work-group.

2.2.4 Machine Vectors
Collections of work-items within a work-group are executed in
lock-step as part of a vector, called an mvector. The specific length
of an mvector is implementation defined and is exposed in OpenCL
C++ only as a symbolic constant (MVECTOR SIZE). Work-items
are gang-scheduled in groups (of size MVECTOR SIZE) and it is
assumed that these are SIMD executed when convergent, poten-
tially using predication.

The mvector is a construct that exposes a guarantee the compiler
and runtime are making to the developer. Work-items that are



part of a single mvector are guaranteed to execute synchronously
within the bounds of well-defined reconvergence rules (essentially
code must reconverge no later than the immediate post-dominator
of the divergence). These guarantees ensure that the developer is
able to tell when code will be synchronously executing and, more
importantly, where sets of work items are guaranteed to make
independent forward progress. He is able to develop more flexible
algorithms with this information available, and functions such as
the width enhanced barrier may then be derived from the base
feature.

Work-items are assigned to mvectors in work-item flattened ab-
solute ID order. Two work-items within the same work-group will
be in the same mvector if the floor of (work-item flattened abso-
lute ID / MVECTOR SIZE) is the same. work-items are assigned
to mvectors in the same order for any work-group. For many im-
plementations this may mean assigning a work-group to a single
compute-unit, as is the case in OpenCL, but OpenCL C++ requires
only the behavior and an implementation is free to execute a work-
group however it chooses as long as it preserves the visible invari-
ants.

The assignment of work-items to mvectors is sequential, i.e.
they are sequentially numbered. As the maximum number of di-
mensions of a work-group is 3, X by Y by Z, work-items are packed
into mvectors in consecutive order in X, then Y, then Z.

As an example, consider the case when the work-group size is
16×4×10 and the MVECTOR SIZE is 64. Such a work-group has
640 work-items. Dividing this number by 64 (i.e. MVECTOR SIZE
in this case) gives 10 mvectors per work-group 1

The mapping follows the pattern:

mvector 0: Z = 0, Y = 0, X = 0
mvector 1: Z = 0, Y = 0, X = 1
...
mvector 15: Z = 0, Y = 0, X = 15

mvector 16: Z = 0, Y = 1, X = 0
...
mvector 31: Z = 0, Y = 1, X = 15
mvector 32: Z = 0, Y = 2, X = 0
...

As OpenCL C++ does not specify a single size for an mvector it
is the developers responsibility to not encode assumptions about a
specific implementation size, as the behavior may be undefined on
another implementation. This can lead to an application generating
incorrect answers and in some cases deadlock.

Standard OpenCL does not expose the machine vector, even
though almost all known hardware implementations of the archi-
tecture provide some notion of vector, e.g. NVIDIA’s WARP or
AMD’s WAVEFRONT. The advantage of exposing it is the possi-
bility of adding explicit vector operations, such as shuffle.

One interesting operation we have been exploring in this regard
is width defined barrier operations. For example, the following
OpenCL C++ builtin allows the programmer to capture the set of
work-items that are participating in a work-group barrier operation:

void barrier(
const cl_mem_fence flags, const size_t num);

This is an extension to the OpenCL C barrier operation with an
additional argument that defines how many work-items will take
part in the barrier operation. This argument is required to be known
statically, to be a power of 2 and describes a consecutive set of

1 It is possible that some implementations might support work-group sizes
that are not multiples of MVECTOR SIZE, at this time OpenCL C++ makes
this restriction.

work-items. These limitations are required to allow the compiler to
narrow down exactly which work items are taking part. With this
information the compiler can often determine if communication is
within a mvector and perform barrier elision. There are numerous
examples, c.f. CUDA work on RadixSort [11, 12], where barriers
are elided by hand making the code non-portable across different
devices, our width defined barriers introduce a portable way to
achieve the same functionality and performance. We are currently
working on generalizing this idea to width defined functions, that
the barrier operation would be one instance of. We leave the details
of this to future work.

2.2.5 NDRanges
Work-groups in turn are grouped into a larger structure called a
NDRange. When a kernel is launched an ndrange is formed that
describes the set of work-groups to be executed. As execution
proceeds work-groups are distributed onto an OpenCL C++ device.
Note, it is not required that separate work-groups be executed on
the same device, other than respecting visibility order as defined by
the memory model.

The maximum value of the flattened ID (and therefore the max-
imum size of a range) is 232 − 1.

The relationship between, work-item, mvectors, work-groups,
and ranges is shown diagrammatically in Figure 4.

2.3 Memory Model
The OpenCL C++ memory layout is similar to that of a traditional
GPGPU segmented memory model, i.e. there are host and device
memories, the later of which is divided into separate non-coherent
memories.

It is clear that going forward, that many architectures will pro-
vide a single unified heap between host and device, c.f. AMD’s Fu-
sion APUs [17] or Intel’s Sandy Bridge [8], opening up not only the
ability to reduce the cost of data-transfers but also opening the way
for pointer based data-structures and algorithms shared between de-
vices. In designing OpenCL C++ we believed it was important to
introduce the ability to develop data-structures using pointers, on
both host and device. This goes beyond any existing GPGPU mod-
els, including OpenCL and Cuda.

In the design and introduction of OpenCL C++’s pointer type
it was critical to make it work on existing hardware, via custom
heap allocators and implicit data-movement between host and de-
vice, but also to introduce no additional overhead when mapped to
architectures that share a single virtual address space.

With some thought it became clear that this could actually be
achieved on today’s architectures, while maintaining the prospect
of performance benefits from future unified address space architec-
tures. To this end OpenCL C++ introduces both a class that behaves
just like a C++ pointer and the notion of heap allocators. The fol-
lowing is an example of how OpenCL C++ pointer types might be
used in practice:

cl::Pointer<int> x = cl::malloc<int>(N);

for (int i = 0; i < N; i++) {
*(x+i) = rand();

}

std::function<
Event (const cl::EnqueueArgs&,

cl::Pointer<int>)> plus =
make_kernel<cl::Pointer<int>, int>(
"kernel void plus(global Pointer<int> io)"
{

int i = get_global_id(0);
*(io+i) = *(io+i) * 2;



}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
cout << *(x+i) << endl;

}

The key point to note is that a single shared pointer type,
Pointer<int>, is used across both host and device. Furthermore,
unlike OpenCL and Cuda there are no explicit data-transfers re-
quired to move the data between the difference address spaces.
In this example pointers are used to store a traditional OpenCL
buffer, with implicit data-movement, but in general OpenCL C++
pointers can be read and written to build complex pointer based
data-structures. For example, the following code shows how to
define a linked list and a function to allocate nodes:

struct Node
{
int value;
Pointer<Node> next;

};

Pointer<Node> createNode(int x)
{

Pointer<Node> result = malloc<Node>(1);
result->value = x;
result->next = Pointer<Node>();
return result;

}

OpenCL C++’s pointers are based on the notion of Heap Lay-
ers [2]. Heap Layers is a mixin based approach to memory alloca-
tion. Heap Layers are highly customizable, allowing different al-
locators for specific types of data as well as specialized allocation
sizes. In general, an OpenCL C++ pointer is defined as the template
class:

template <
typename T,
template<class Align> class Heap = SharedHeap,
typename AlignmentType = size_t >

class Pointer;

where

• T is the type of value pointed too;
• Heap is the actual heap allocator, for type T, which itself is a

class that must meet a specific interface, described below.
• AlignmentType is used to calculate the alignment of alloca-

tions.

The argument of particular interest is Heap. This represents the
allocator for values of type T. There is no requirement that there be
a single allocator for a given type, for example, an implementation
might provide an alternative implementation for small allocation
sizes. The interface for allocators must be implemented by all
instances used in Pointer:

template<typename AlignmentType_>
class Allocator {
public:

template<typename T>
size_t malloc(size_t num);

template<typename T>
void free(size_t offset);

Event sync(
Affinity placement = Anywhere);

};

Any allocator providing malloc and free implementations can be
used to build custom new/delete implementations in OpenCL C++
enabled applications. Unlike in OpenCL, data movement is, by de-
fault, implicit between the host and the devices in the system. How-
ever, to allow finer grained control the allocator interface provides
a sync member function. This takes an affinity (hint) and returns
an event, that can be used to control execution synchronously (i.e.
wait for memory to be transferred) or asynchronously to perform
this action ahead of time.

As specific allocators can be used for all allocations, even of
the same type, this allows for very fine grain control of data-
movement, while providing a simple implicit move semantics for
the default case or when data movement of a particularly region is
not on the crucial path.

A default heap is required to be provided by an implementation
for all values of T_. This can be referenced in the OpenCL C++
namespace as cl::SharedHeap, and is assumed to have an align-
ment type that is set to size_t.

2.4 OpenCL C++ Objects
For each base object in the original OpenCL C API, e.g.
cl_device_id, a corresponding OpenCL C++ class is provided.
Unlike the C API the C++ one can provide multiple ways of con-
structing an OpenCL object, changing just the parameters when re-
quired. A requirement of OpenCL C++’s design was to allow close
interaction with the underlying C API: it is thus always possible to
get to the corresponding C object by use of the operator().

Additionally any C runtime library must either implicitly man-
age memory or have the user manage it explicitly. OpenCL ob-
ject lifetime is explicitly controlled by the programmer with rou-
tines to increment and decrement the reference count for each en-
tity. It is well known that this can lead to program errors, showing
up as space leaks or references to invalid objects. The solution to
this problem is implicit reference counting. In C this is difficult
due to the lack of destructors, and while the implementation in the
OpenCL C++ runtime was not trivial, due to some strange choices
in the OpenCL C API, we needed to implement it only once and it
now works for all programs.

In general, there is a one-to-one mapping from classes to C API
types but in some cases, such as image types, we choose to break
this model and use inheritance. In particular, we felt that OpenCL
C’s choice to represent image and buffer objects as a single cl_mem
type was a mistake and did not fit with our original goal of type-
safety when possible. This comes into its own when combined with
the kernel functor objects, described shortly, where calling kernels
is largely type safe, in particular when fully-typed pointer objects
are used.

2.5 Information routines
For each OpenCL type, e.g. devices and command queues, the host
API provides the ability to query information about the specific
object. In general, the query commands are of the form:

cl_int clGetXXXInfo(
cl_XXXid object, cl_XXX_info param_name,
size_t param_value_size, void * param_value,
size_t * param_value_size_ret);

where XXX is replaced by the object type being queried. There
are many problems with this C-based API but in particular it is not
type safe. Type safety appears in many forms, including restricting



the ability to pass any integer value for the enumeration argument
cl_XXX_info.

As values returned by clGetXXXInfo routines are not reference
counted by the implementation using the C API, this means that
the application must first call the routine to determine how much
memory will be required, then allocate the required storage, then
make the info call again, then use the result, and finally free any
allocated storage. This is a lot of code to just get a single piece of
information! OpenCL C++ addresses all of these issues through
an application of type traits [14]. In general any OpenCL C++
object, often a mapping for an original OpenCL C object provides
a member function of the form:

template <cl_int name> typename
detail::param_traits<

detail::cl_XXX_info, name>::param_type
getInfo(cl_int* err = NULL) const;

All of the interesting work is performed in the class
detail::param_traits<...> which determines the result type
from the template argument by linking it to the corresponding
specialized class that was generated from the original enumeration
type.

As an example of its application consider the following, possi-
bly invalid, OpenCL C code:

size_t size;
clGetDeviceInfo(device, CL_DEVICE_LOCAL_MEM_SIZE,
sizeof(cl_ulong), &size, 0);

This code is valid when sizeof(size_t) == 8, i.e. for 64-bit
applications, but is invalid when sizeof(size_t) == 4. Worse
still this could be the kind of bug that is dormant for a long time,
and then would only show itself at runtime. This and similar bugs
are ruled out by the OpenCL C++ API as the same program would
have been expressed as:

size_t size =
device.getInfo<CL_DEVICE_LOCAL_MEM_SIZE>();

In the case the sizeof(size_t) == 4, a compile time error
would be reported.

2.6 Defaults
OpenCL C++ introduces defaults for common use cases. In partic-
ualar, defaults are provided for:

• Platform, simply pick the first one;
• Device, use the CL_DEVICE_TYPE_DEFAULT macro;
• Context, created from the default device; and
• CommandQueue, created on the default device and context.

The API introduces static member functions for each of the
correspoding classes of the form:

static Type getDefault();

where Type is one of the class types taken from the above list.
While defaults provide a simple approach to writing basic ap-

plications, excellent for beginners, the model as descibed quickly
comes up short as soon as one of the defaults is not as expected.
The problem is that changing one default means that others need to
change too. To handle this use case OpenCL C++ supports routines
for setting a particular default, which has a transitivie effect, i.e.
setting the default device causes the default context and command
queue to be updated to reflect this change.

With these small changes, writing simple OpenCL C++ pro-
grams is much easier and yet still allows the programmer to gain

full control when the more expressive API is required. We believe
this is a sign of a good API design, as cut-and-paste of boiler plate
API code is reduced considerably, while retaining the same level of
expressibility.

2.7 Kernel Functors
The OpenCL interface for kernels is very verbose, breaking the
kernel creation, argument setting, and dispatch into seperate APIs.
Furthermore, there is no gurantree of static type safety, either for
argument types themselves or for the number of actual arguments.
To address these short comings OpenCL C++ introduces kernel
functors, which provide an interface for creating type safe, directly-
callable kernels. The cornerstone of this interface is the following
set of definitions:

struct EnqueueArgs;

template<class... T>
class KernelFunctorGlobal
{
public:

...
Event operator(EnqueueArgs&, T...);

};

template<class... T>
functionImplementation_
{

typedef std::function<Event (
const EnqueueArg&, T...) type_;

functionImplementation_<T...>(
const KernelFunctorGlobal<T...>&);

Event operator()(
const EnqueueArgs&, T...);

operator std::function<Event (
const EnqueueArg&, T...) ();

};

template<class... T>
struct make_kernel :

public functionImplementation_<T...>
{

make_kernel( const Program&,
const std::string, cl_int *);

make_kernel(const Kernel, cl_int *);

make_kernel( const std::string, cl_int *);
};

At the base is a single functor class, KernelFunctorGlobal
that wraps a kernel object and provides a function call method that
encodes the seting of arguments and dispatch into a single intrface.
EnqueueArgs is used to wrap the command queue, ndranges, and
so on and is elided for space reasons. The interesting aspect of
the kernel functor implementation is the public interface exposed
by make_kernel, which constructs a kernel functor from either a
program and name pair, a kernel object, or just a string representing
the program (simply selecting the first kernel to appear in the input).

The design is complicated by having a intermediate step, intro-
duced by inheriting from functionImplementation_, which is
not exposed to the user in the CL namespace. This complication is
down to propagating types correctly in the C++11 type system, in



particular, the kernel functors need to be assignable under the use
of C++11’s auto keyword and thus the implementation “helps” the
compiler by propagating types. Additionally, C++11 promotes pro-
viding stronger types for functor objects, i.e. std::function, and
this is supported by providing an overload for the cast operator.

While online compilation offers many benefits for library gener-
ators thanks to the ability to build kernels on-the-fly, an unfortunate
side-effect is that it is difficult for an implementation to guaran-
tee that make_kernel is applied to a source file with the corre-
sponding kernel type. The best we can do without extending the
OpenCL API is that if the kernel has been compiled with OpenCL
1.2’s -cl-kernel-arg-info flag, then some information is em-
bedded in the kernel object to describe the arguments. We can use
this to perform a (currently slightly limited) runtime check against
the functor type. This information could be extended to better rep-
resent the full set of C++ types. If we assert as an invariant that the
make_kernel call matches its target kernel (and assume therefore
that we add full runtime checks in the future) it is possible to show
that kernel functors are type safe. Furthermore, this lays the ground
work for an offline compilation mode that automatically generates
these functor objects, or even merging into a single source style
model, similar to Microsoft’s C++ AMP [13]. We leave these pos-
sible extensions to future work.

3. OpenCL C++ Æcute Programming
Pointers have always been a limiting factor for parallel program-
ming. Numerous techniques exist to either offer guarantees to a
compiler that pointers are independent (c.f. restrict or OpenMP
parallelism guarantees) or to remove pointers entirely from lan-
guages. Without such techniques it can be difficult for a compiler
to infer indepedence of pointer accesses.

Parallelism can be regained from a loop by letting the program-
mer make a guarantee. It is more difficult for a compiler to deduce
when it can safely move data into software-managed caching struc-
tures (such as the local memory regions in OpenCL). In particular,
if it does move data, inefficiencies can arise when it is unable to de-
duce reuse, though it has made an assumption that caching is safe.

The decoupled Access/Execute model [6] aims to alleviate this
by separating the execution domain of a problem from its memory
mapping. By strictly and statically defining the mapping we open
opportunities for the compiler to make a wider set of assumptions
about data access and hence perform a wider set of optimizations.

Below we show a very simple example of this technique:

typedef cl::Pointer<int,
cl::Access::Mapping<
cl::Access::Project<100, 100>,
cl::Access::Region<3, 3, cl::Access::Clamp>>
AEcutePointerIN;

typedef cl::Pointer<float,
cl::Access::Mapping<
cl::Access::Project<100, 100>>
AEcutePointerOUT;

kernel void plus(
global const AEcutePointerIN in,
global AEcutePointerOUT out)

{
int2 wid =

(int2)(get_global_id(0), get_global_id(1));
float sum = 0.f;
for( int i = 0; i < 3; ++i ) {

for( int j = 0; j < 3; ++j ) {
sum += (float)in(j, i);

}
}
out = sum / 9.f;

};

In this example we have two pointers: one for input and one
for output. The input pointer is marked const as might be standard
practice. In addition to this we have additional and flexible infor-
mation encoded into the pointer type, which we term the mapping.

First we introduce a projection. As OpenCL defines an iteration
space for a given kernel launch the execute part of the Æcute model
is a combination of this launch metadata and the body of the kernel.
The projection is the first stage of the access aspect in that it defines
a mapping from each point in the execution domain, or the kernel’s
NDRange, to the memory object sitting at the far end of the pointer.

For the output pointer this projection is all we need and we have
mapped our flat pointer into a 100 × 100 memory region. Note
that we do not need to index this pointer, and indeed indexing it
would remove some of the benefit. We have predefined a simple
linear mapping to 2-dimensional memory, in much the same way
that an array would be mapped, and this is strictly restricted and
hence guaranteed to the compiler.

As this simple example is an instance of a blur filter, we have a
precisely defined set of input points needed to compute each output
location. We make use of this and encapsulate that information in
the pointer’s type. In this case we have the same projection of the
pointer but it defines only the mapping of the centerpoint of the
input. We also annotate the pointer with a region such that from
each projected point in memory, and according to the shape of the
projection, we read a 3 × 3 region from the input at each point.
Access into that region can then be random, as we see at the point
of use of in(j, i). Accessing in directly returns a Region object,
which is usable as a small 2-dimensional array in the code.

Note that one benefit of this annotation is that the compiler can
assess that neighboring points in the iteration space share input
data. The system is hence at liberty to construct shared arrays in
local memory where data is loaded once and used by neighbour-
ing work items.

The final feature shown in the code example is Clamp, allowing
us to specify the behavior of accesses out of the projection region,
and hence out of the buffer. This can be enforced and tracked in
debug mode to assist with code correctness.

This is just a simple taste of our thinking on the application of
the Æcute model to OpenCL C++ pointer structures. The goal is
to bring a wider set of parallel programming correctness and op-
timization capabilities to the language in a type-safe and syntacti-
cally standard fashion.

4. OpenCL C++ Kernel Language
The OpenCL C++ Kernel language is an extended subset of the
newly ratified C++11 specification. Like the C-based kernel lan-
guage for OpenCL, it defines a large number of builtin operations
for parallel execution, e.g. work-group barriers. It includes an ex-
tensive math library, which unlike C99’s math library, carefully de-
fines precision requirements. To support object construction and
destruction placement new and delete operations are provided. We
do not yet provide dynamic memory allocation, mainly due to de-
velopment effort and to date we have not found a large number
of parallel applications that require it. Dynamic memory allocation
could easily be added using an approach similar to Xmalloc [7] and
in fact our implementation of placement new/delete uses ideas sim-
ilar to those addressed in Xmalloc to avoid contention of atomic
memory operations.

OpenCL C++ is more than some smart tricks to reduce the
amount of host code. In particular, OpenCL C++ addresses abstrac-



tion for GPGPU programming both on the host and also for the
device itself. Unlike the more traditional automatically managed
cache architectures, such as x86 or ARM, the GPGPU program-
ming model exposes the memory hierarchy to the programmer re-
quiring that it be managed explicitly. To support this, OpenCL bor-
rows address spaces from Embedded C, defining global, local, con-
stant and private address spaces. For example, an OpenCL kernel
that uses global, local, and private2 address spaces to sum the val-
ues of a sub-vector in local memory and then write the result into
global:

kernel void sum(
global int * in, local int * s,
global int * out)

{
s[get_local_id(0)] = in[get_global_id(0)];
barrier(0);
for (
int i = 1; i < get_group_size(0); i <<= 2) {

int idx = (i * get_local_id(0)) << 2;
if (idx < get_group_size(0)) {
s[idx] += s[idx+i];

}
barrier(0);

}
if (get_local_id(0) == 0) {

out[get_group_id(0)] = s[0];
}

}

As expected OpenCL C++ lifts address spaces to work for
member functions and member data, within objects. However, it is
not as straightforward as it might first seem. For example, consider
the following simple structure definition and kernel:

struct Colour
{
int r_, g_, b_;
Colour(int r, int g, int b);

};

kernel foo(global Colour& gcolour)
{

Colour pcolour = gcolour;
}

Initially one might think this is valid but consider that member
functions of a C++ class carry an implicit this parameter. What
address space should be applied to the this pointer for Colour,
global or private? In the above example it needs to be both: private
for the left hand side of the assignment and global for the right.

Allowing the user to specify the particular address space of
a member function, including overloading for different address
spaces, goes someway to addressing the problem. However, lifting
OpenCL address spaces into OpenCL C++ was not as straightfor-
ward as it might first seem. In the OpenCL C version of the above
example the copy is done via some internal logic as structures are
POD only, but in the C++ version there is, in general, a copy con-
structor which has an implict this pointer argument. But what ad-
dress space does the this pointer live in? The answer is both, local
and global.

OpenCL C++ solves this problem by extending C++11’s type
inference to infer implicit address spaces from context. Further-
more, by novel application of C++11’s auto/decltype features for
type inference OpenCL C++’s type system allows implicit address

2 Within kernels the private address space is the default.

aspace ::= global | local | private

aspace-mod ::=
aspace | ’address-space’ variable

aspace-modifer ::=
aspace-mod | aspace-modifer ’+’ aspace-modifer

Figure 5. Address space modifier syntax

spaces to be applied to the explicit use of the this pointer within
member functions. To our knowledge we are the first to show that
OpenCL, and by implication Embedded C’s [10], notion of address
spaces can be fully integrated within C++’s type system.

One solution here would be to say that the compiler generated
construtors assume the global address space and other constructors
are overloaded on the address space explicitly. However, this puts
the burden on the programmer and the alternative solution that we
adopted was to extend C++’s type system to automatically infer
the address space from context when not specified. This fixes the
above example. More generally we allow a member function to be
marked in one or more address spaces, as defined by the grammar
in Figure 5.

The rules for overloading of member functions are extended
to include aspace-modifer expressions, e.g. the following example
defines a version of Shape in the global and local address spaces
and a version for the private address space:

struct Shape
{

int setColour(Colour) global + local;
int setColour(Colour) private;

};

Figure 5 also defines the modifer address-space variable which al-
lows a template type parameter to carry information about an ad-
dress space. For this to work in the C++ type system we introduce
a new template type parameter, address-space aspace, where as-
pace is a variable that can be bound to one of: global, local, or
private. Template equivalence, instantiation, and specialization is
extened trivailly to account for address spaces. Adapting the above
shape example the following uses address space templates to pass
the colour argument by reference:

template<address-space aspace_>
struct Shape
{

int setColour(aspace_ Colour&) global + local;
int setColour(aspace_ Colour&) private;

};

Explictly marking member functions with address spaces works
because the corresponding this pointer context is known and thus
can be easily infered. What about when this is not the case? To see
the issue consider implementing assigment for our shape example:

XXX Shape& operator=(const XXX Shape& rhs)
{

if (this == &rhs) { return *this; }
...
return *this;

}

what address space should we put for XXX? Templated address
spaces provide one solution, however, using them can change the
semantics of existing code, in particular delaying type-checking
and so on until later use. Fortunately, C++11 provides the answer in



its new auto/decltype feature. We extend decltype inference to infer
address space qualifer, with respect to context, for the this pointer
and require that the above example is recast as:

operator=(const decltype(this)& rhs)
-> decltype(this)& {

if (this == &rhs) { return *this; }
...
return *this;

}

In the case of auto it is easiler extended to infer the address
space for the this pointer from context and completes the lifting
of OpenCL C’s address space qualifers into C++11’s type system.

There is a further issue that arises from declaring objects in the
local address space due to the side effects of object declaration
in C++. Construction of such an object has to be run in each
work-item. As a result construction in local memory carries an
implicit race condition. While this could be dangerous in some
circumstances, it was decided that the overhead of running the same
operation in each work item would be low on most devices (due to
SIMD execution) and deciding on a set of restrictions for use of
classes in local declarations would be unwieldy. Care must hence
be taken that the parameter passed to the constructor is uniform,
and that the constructor code is also uniform, or races may occur.
A formal presentation of address space inference is provided by [5].

5. Implementation
OpenCL C++ is implemented in two parts. Firstly the C++ API is
implemented as a single, 14, 000 line, C++ header file. While we
would not recommend implementing something like OpenCL C++
in a single header file, this was a requirement set by the Khronos
Group and not something we had control over. Most of the im-
plementation techniques are standard and do not require additional
mention. Our use of traits to implement type safe information func-
tions is novel and we have not found other examples, however
it should be noted that it is just an application of template meta-
programming, itself well documented, c.f [4].

As OpenCL C++ provides a thread safe API the implementation
of defaults proved difficult for two reasons:

• Implementing state in a C++ header file, including initializers,
leads to duplicated symbols. The solution for this was via weak
symbols, not part of the C++ standard and thus required using
GCC and Visual Studio extensions.

• Introducing shared state means implementing mutual exclusion
for the creation of defaults. This was done with a lazy imple-
mentation of the double locking pattern, using spin locks3.

Due to limitations of current C++11 compilers with respect to
variadic templates4, our implementation of kernel functors is based
on type lists [1]. The number of valid kernel arguments is restricted
to 32 but as host compilers currently implement similarly low lim-
its for std::function and structures can easily be used to wrap argu-
ments this is unlikely to be an issue. Once variadic templates are
working in multiple compilers we expect to move the implementa-
tion to use them, as it will reduce the code complexity considerably.

The OpenCL C++ API has been validated on all public OpenCL
implementations, including Apple’s OpenCL for OS X Lion, Intel’s
OpenCL SDK, and AMD’s OpenCL SDK. The latest OpenCL C++
API was released in 2012 and contains all but the Æcute features
described in this paper.

3 Our original implementation discovered a GCC bug with compare-and-
swap on OS X Lion.
4 Only GCC 4.6 supports varadic templates and we found that certain
examples failed to generate correct code.

The second part of the OpenCL C++ implementation is the de-
vice compiler. In this case we had to pick a specific implementation
and as we had access to AMD’s compiler technology we choose
that. AMD’s OpenCL compiler is based on EDG’s C++ frontend,
which is a well designed and validated C++11 frontend. We modi-
fied AMD’s existing OpenCL frontend to first work as an OpenCL
C++ compiler and then extended it to support the automatic infer-
ence of address spaces. Overall this process was straightforward,
although we found that some corner cases where only resolved by
the development of a ever growing test suite.

The OpenCL C++ device language, as described in this paper
is part of AMD’s APP SDK 2.6 and can be downloaded from
developer.amd.com. Some of the features, particularly the host
code, are likely to be adopted more widely in Khronos.

6. Evaluation
OpenCL C++ has not been implemented with the aim of increasing
application performance. The primary goals are to:

• Ease development of applications by reducing line code count
and increasing the amount of reuse possible in kernels through
inheritance.

• Reduce the rate of errors in code, largely through automating
some of the necessary memory management.

• Wrap the OpenCL host API as thinly as possible. A thin wrap-
per then provides minimal performance degredation and maxi-
mal flexibility, minimising negative effects arising from its use.

To this end our evaluation consists of two analyses. We take five
OpenCL applications, ranging from trivial to fairly complicated.
For each application we implement the OpenCL operations both in
C and C++. We measure the performance of each as well as the line
count differential.

The applications we chose are:

• Vector addition: the “hello world” of data-parallel programming
and likely to be one of the first applications a developer is
exposed to.

• Pi computation: a computation of the value of pi that acts as a
small self-contained unit of work.

• Ocean simulation: a heterogeneous CPU/GPU FFT-based ap-
proximation of an ocean surface for rendering.

• Particle simulation: a highly heterogeneous particle simulation
performing collision detection and solution on both the CPU
and GPU with interactions between the two.

• Radix sort: a high performance radix sort optimised for the
GPU and contained within a sophisticated abstraction library
for integration with larger applications.

Unfortunately evaluation metrics for the C++ device code are
harder to construct. The implementation certainly works and we
have high performance complicated applications implemented in-
ternally using its features including a template-driven radix sort of
similar performance to that used in this paper. Some of these imple-
mentations will be made public along with access to the compiler
in the near future.

6.1 Performance differential
Performance measurements for all five examples are unexciting,
though successful. In all cases performance is identical to within
random fluctuations. For example, the OpenCL C++ Ocean imple-
mentation drifts within one frame-per-second up or down of the
OpenCL C version.



The minimal performance differential observed is to be ex-
pected given that the C++ layer is a very thin wrapper around C
functions. The cases where it might add overhead where, for ex-
ample, all arguments are set repeatedly in a functor rather than fac-
toring out some argument setting from a loop can be observed to
be rare in practice. The development and code management over-
head of maintaining parameter passing spread throughout the code
makes it unusual in practice and though the final two examples used
here are real applications the case does not come up.

One problem that appeared during testing was that performance
of functor interfaces for kernel dispatch was significantly below
that of the C APIs. Given the thin nature of the C++ bindings this
was surprising.

The solution turned out to be that, for correct behavior, the
C++ interfaces copied objects: in particular the launch descripion.
This interface contains a queue reference that needs to correctly
reference count as the EnqueueArgs struct needs to strictly own
a reference to the queue to avoid it being deleted before use.
This reference count created a serious performance bottleneck due
to a bug in the runtime implementation that led to flushing the
queue when releasing a reference to the queue object. So while
in the process it appeared that maybe the C++ interfaces caused
overhead, in reality they served to identify a runtime bug and
performance overhead from reference counting is negligable. On
the other hand, safety improvements resulting from the resource
aquisition is initialization (RAII) model may be significant.

6.2 Code size
Depending on the use case, code size savings can be substantial,
particularly if the code structure allows for use of functors or the
application is simple enough for default entities to be valid. Note
that default entities are rarely likely to be useful for seasoned
programmers who wish to have full control. However, the code size
reductions in trivial “hello world” applications substantially reduce
the barrier of entry to OpenCL programming.

In the following table we show the line count of relevant files
using OpenCL’s C API and the OpenCL C++ API. We defined “rel-
evant” as any file with an OpenCL API call in. Code not directly
relating to OpenCL API calls is unchanged and the coding stan-
dards of the surrounding code are matched as closely as possible.

Application C lines C++ lines
Vector addition 268 140
Pi computation 306 166

Ocean simulation 1386 533
Particle simulation 733 601

Radix sort 627 593

Note that the final two applications are part of larger complex
frameworks and the OpenCL code was abstracted by the author into
a complicated class library. Even in these examples we see gains,
but the majority of the code is that generic framework rather than
OpenCL API code.

7. Conclusion
In this paper, we have presented OpenCL C++, a production devel-
opment system based on C++11 that supports OpenCL enabled de-
vices and platforms. We have shown that this can give large produc-
tivity results over the existing OpenCL programming model based
on C99, and furthermore have done this without modification to the
host compiler, unlike solutions such as Cuda.

OpenCL C++’s kernel language is the full C++11 dialect, albiet
with some restrictions on the set of supported library routines.

We have shown how OpenCL’s address spaces, and by implication
Embedded C’s, can be lifted and extended to work within C++11.

OpenCL C++ is a practical abstraction on top of OpenCL’s
C interface, providing abstraction for both the host and device
components of an application. Many of the features are public and
applications are or will soon, be shipping.

OpenCL C++’s Æcute extensions to pointers looks promising
and we are actively researching their implementation. We hope to
be able to release a public implementation soon, allowing devel-
opers to explore its application to real world problems. Combin-
ing this work with our work for GPUs applying C++11’s memory
model, including communication across work-groups and the com-
plete platform, we believe we can bring OpenCL in reach of main-
stream parallel programmers.
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