
Efficient Implementation of GPGPU Synchronization
Primitives on CPUs

Jayanth Gummaraju Ben Sander Laurent Morichetti Benedict Gaster Lee Howes

Compute Research Group, Advanced Micro Devices, Sunnyvale, CA-94085, USA
firstname.lastname@amd.com

ABSTRACT

The GPGPU model represents a style of execution where
thousands of threads execute in a data-parallel fashion, with
a large subset (typically 10s to 100s) needing frequent syn-
chronization. As the GPGPU model evolves to target both
GPUs and CPUs as acceleration targets, thread synchro-
nization becomes an important problem when running on
CPUs. CPUs have little hardware support for synchroniza-
tion and must be emulated in software, reducing application
performance. This paper presents software techniques to im-
plement the GPGPU synchronization primitives on CPUs,
while maintaining application debug-ability. Performing limit
studies using real hardware, we evaluate the potential perfor-
mance benefits of an efficient barrier primitive.

Categories and Subject Descriptors: D.1.3 [Program-
ming Techniques]: Concurrent Programming

General Terms: Performance.

Keywords: GPGPU, Multicore, Synchronization.

1. INTRODUCTION

Recently, the high performance of GPU architectures has
led developers to use graphics hardware for more general-
purpose applications i.e., GPGPU model. Many GPGPU
programming frameworks have been developed, from stream-
ing models based on Brook [3], ATI CTM [1], and NVIDIA
CUDA [5] to the more recent OpenCLTM [2]. These frame-
works run control code on the CPU and performance critical
data-parallel code on the GPU using GPUs as accelerators.

The onset of multicore CPUs and closely integrated CPUs
and GPUs, are driving the GPGPU model to encompass
CPUs as acceleration targets in addition to GPUs [7]. The
rapidly increasing FLOPS on CPUs complements well the
FLOPS on GPUs. A key challenge in extending the GPGPU
model to encompass CPUs is to reduce the overhead of
thread synchronization. The GPGPU model embodies a
style of execution where thousands of threads execute in
a data-parallel fashion, with a large subset of threads (typi-
cally 10s to 100s) needing to synchronize frequently to man-
age shared local memories. Unlike GPUs, CPUs have little
hardware support for synchronization, which therefore must
be emulated in software. Hence, the cost of synchroniza-
tion could be several orders of magnitude higher for CPUs,
reducing application performance.

In this paper, we present new software techniques to im-

Copyright is held by the author/owner(s).
CF’10, May 17–19, 2010, Bertinoro, Italy.
ACM 978-1-4503-0044-5/10/05.

__kernel foo ()

{

}

Wi� Wi� Wi� Wi���WG – One OS thread

__kernel foo ()

{

}

Wi� Wi� Wi� Wi���
barrier();

Wi: Work Item

WG: Work Group

Figure 1: Work-item Scheduling

plement GPGPU synchronization primitives on CPUs. We
show how these primitives can be implemented entirely in-
side the runtime system. This ensures easy debug-ability of
the application kernels and preserves the use of standard,
off-the-shelf compilers and debuggers with only minor ex-
tensions, unlike other approaches (e.g., mCUDA [7]). Us-
ing limit studies, we demonstrate the potential performance
benefits of efficiently implementing the barrier primitive
for several GPGPU applications on real hardware (AMD
PhenomTM II).

2. MAPPING THE GPGPU MODEL

Without loss of generality, we use OpenCL terminology [2].
In OpenCL, a control thread executing on the host (e.g.,
CPU) dispatches kernels onto a compute device (e.g., GPU).
The compute device breaks the kernel execution into work-
groups each comprising of several threads or work-items.
The work groups are dynamically scheduled on the cores.
Once all work groups finish execution, the control thread is
notified.

Mapping work-groups comprising hundreds of work-items
onto CPUs using conventional methods (e.g., pthreads,
OpenMP [6], etc) is inefficient since CPUs have only a few
hardware contexts, and context switching between hundreds
of work-items is very expensive (several 1000 cycles per con-
text switch). The cache locality between work-items of the
same work-group is also lost since the work-items potentially
execute on different cores.

Our implementation maps work-items of the same work-
group to the same core (Figure 1). A single OS thread per
core time-multiplexes work-items. The local memory, used
for data shared between work-items, is conceptually mapped
to a portion of the L1 data cache, leading to efficient com-
munication between work-items.

85

__kernel foo()

{

:

:

:

barrier();

:

:

:

}

WI::barrier() //Inside the runtime system

{

//save current context

if (setjmp() != 0)

return; //if returning from longjmp

if (nextWIContext == NULL)

longjmp(); //to createWIContext

longjmp(); //to nextSavedWIContext

}

Figure 2: Barrier Implementation

3. SYNCHRONIZATION PRIMITIVES

The GPGPU synchronization primitives fall into three
main categories: Atomics, Fences, and Barriers.

On GPUs, atomic updates (e.g., atom add/xchg) are im-
plemented using custom hardware for both local and global
memories. On CPUs, atomics to local memory are turned
into nops because work-groups execute on a single CPU core,
and atomics to global memory are implemented in the run-
time using atomic prefixes (e.g., lock prefix in x86). This
prefix ensures that the data-bus/cache line containing the
data is exclusively available before performing the update.

Memory fences on the GPU are typically implemented
using ACK instruction (e.g., WAIT_ACK in ATI ISA) which
waits for all the outstanding writes to the specified memory
to be committed. On the CPUs, as with atomics, the fences
to local memory are turned into nops permissible because of
the CPU memory consistency model. Global memory fences
are implemented in the runtime using a fence instruction
(e.g., mfence in x86) which is equivalent to the GPU ACK

instruction.
The barrier primitive mandates all work-items of the

same work-group to reach this point before executing fur-
ther. GPUs have a BARRIER instruction with custom hard-
ware support that typically takes just a few cycles [4] to
execute (a few 10s of cycles for large work-groups). Threads
waiting on the barrier can be temporarily suspended and
easily replaced with another set of active threads, effectively
hiding even this overhead. In contrast, barrier on CPUs
needs to be emulated in software consuming several thou-
sand cycles.

We implement the barrier primitive on the CPUs by
transforming the problem into one of reducing the context
switching overhead. Figure 2 shows the pseudo-code for our
barrier implementation inside the runtime. When a work-
item executes barrier(), the runtime intercepts the call and
executes setjmp() to save the current work-item context.
Depending on whether or not the next work-item context
already exists, the control jumps to a saved context or to a
newly created context using longjmp(). Once all the work-
items execute barrier(), the control jumps back to the saved
context of the first work-item, and so on (Figure 1). For good
performance, we are investigating custom implementations
of setjmp()/longjmp().

The memory layout of the work-item stacks, which are
saved and restored upon context switch, also plays a critical
role in the execution time of barrier. The runtime allocates
a contiguous region of memory and splices it into contigu-
ous chunks for each work-item stack. The location of these
stacks directly affect their cache placement and TLB utiliza-

0

2

4

6

8

10

12

Tran-1K MM-256 nBody-4K FFT-1K Psum-8M

�����	�
Figure 3: Zero-overhead Barrier.[Transpose: 1K
matrix; Matrix multiply: 256x256 matrices;]

tion. We are currently investigating techniques for efficiently
utilizing caches and TLB.

4. PRELIMINARY EVALUATION

We performed limit studies to evaluate the potential ben-
efits of efficient barrier implementation. We turned the
barrier into a nop, eliminating its overhead. We ran ex-
periments on 3.2GHz AMD Phenom II Quad-core system
with 64-bit Ubuntu Linux. Each core has a 2-way 64K L1-D
cache and 16-way 512K L2 cache.

Figure 3 shows the potential speedup for a few applica-
tion kernels over a baseline implementation using standard
setjmp/longjmp. The average speedup across all applica-
tions is 5.1X. Prefixsum can be improved by more than
11X if barrier overhead is eliminated. We see little bene-
fit for compute-intensive applications that call barrier in-
frequently (e.g., nbody). Overall, these results show that
several applications can be speeded up significantly with ef-
ficient implementation of barrier.

5. CONCLUSION

Synchronization in GPGPU applications is an important
problem especially while executing on the CPUs. While
atomic and memory fence operations have hardware sup-
port on CPUs analogous to the GPUs, there is little hard-
ware support for implementing barrier on the CPUs. We
presented software techniques to implement the barrier

primitive, while maintaining the debug-ability of the appli-
cation kernels. Our limit studies show that GPGPU appli-
cations can be speeded up significantly by reducing barrier

primitive overhead.

6. REFERENCES

[1] ATI CTM. ati.amd.com/companyinfo/researcher/
documents/ATI_CTM_Guide.pdf.

[2] OpenCL. www.khronos.org/opencl/.

[3] Buck, I et al. Brook for GPUs: Stream computing on
graphics hardware. In SIGGRAPH, 2004.

[4] D. Cedarman and P. Tsigas. On dynamic load
balancing on graphics processors. In Graphics
Hardware, 2008.

[5] NVIDIA Corporation. Cuda programming guide 2.0,
2008.

[6] OpenMP Architecture Review Board. OpenMP
Application Program Interface 3.0, 2007.

[7] Stratton, J.A. et al. M-CUDA: An efficient
implementation of CUDA kernels on multicores. Int’l
Workshop on Languages and Compilers for Parallel
Computing, 2008.

86

