
FPGAs, GPUs and the PS2 - A Single Programming Methodology

Lee W. Howes, Paul Price, Oskar Mencer, Olav Beckmann

Department of Computing, Imperial College London
email: {lwh01, oskar}@doc.ic.ac.uk

Abstract
Field programmable gate arrays (FPGAs), graphics process-
ing units (GPUs) and Sony’s Playstation 2 vector units of-
fer scope for hardware acceleration of applications. Imple-
menting algorithms on multiple architectures can be a long
and complicated process. We demonstrate an approach to
compiling for FPGAs, GPUs and PS2 vector units using a
unified description based on A Stream Compiler (ASC) for
FPGAs. As an example of its use we implement a Monte-
carlo simulation using ASC. The unified description allows
us to evaluate optimisations for specific architectures on top
of a single base description, saving time and effort.

1. Motivation

We consider accelerating software using coprocessors. Co-
processors can be classified as custom or as general pur-
pose. General purpose coprocessors include devices such as
graphics processing units (GPUs) and vector units such as
those in Sony’s Playstation 2 console. Custom coprocessors
execute a single task, such as MPEG decoding or encryp-
tion. In addition we see FPGAs which are capable of imple-
menting custom processors dynamically. These technolo-
gies have very different properties and it is unclear which is
best suited to a given task.

Deciding which acceleration technology is most appro-
priate poses a challenge. Programming methodologies range
from circuit design for FPGAs through high level language
support for GPUs. To reduce the development overhead a
single programming model that covers all these architec-
tures is beneficial. We present a system that generates im-
plementations for FPGAs, GPUs and Playstaion vector units
from a single description as shown in Figure 1. Rather than
performing behavioural synthesis we serialize a program
written for A Stream Compiler (ASC [1]) for FPGAs.

2. ASC - A Stream Compiler

A Stream Compiler (ASC) generates stream architectures
for FPGAs using a C++ based object-oriented approach.
ASC allows optimization of a design at the algorithm, archi-
tecture and arithmetic levels. An ASC program represents

GPU PS2

ASC
GPU

ASC
ASC
PS2

Runtime API

Accelerated
Application

ASC
Code

FPGA

Figure 1: ASC code can be linked with the FPGA, GPU or
PS2 backend leading to a result executable on the desired
hardware via the runtime API.

a dataflow system which can be seen as a stream. To avoid
the difficulties often associated with behavioural synthesis
ASC allows direct implementation of a hardware design us-
ing C++ to reduce the programmer and toolchain overhead
for development. Developer access to multiple levels in the
design hierachy offers the ASC programmer great flexibility
of implementation when required. Figure 2 gives an exam-
ple of ASC code in use.

3. Target Architectures

FPGAs: SRAM based FPGAs are the primary compilation
target of ASC. FPGAs can support very high rates of data
throughput when high parallelism is utilized in circuits im-
plemented in the reconfiguable fabric. Although slower and
less power efficient than comparable ASICs, FPGA recon-
figurability offers a flexibility that makes FPGAs compara-
ble with GPUs or vector accelerators as flexible coproces-
sors.

The Graphics Processing Unit: Modern graphics pro-
cessing units offer programmable computation of vertices
and pixels. It is becoming increasingly common to use this
flexible computation in a more general purpose sense then

 int i,a[SIZE],b[SIZE];
 for (i=0; i<SIZE; i++){
 b[i] = a[i] + 1;
 }

 STREAM_START;
 // variables and bitwidths
 HWint a(IN, 32),b(OUT, 32);
 STREAM_LOOP(SIZE);
 STREAM_OPTIMIZE =
 THROUGHPUT;
 b = a + 1;
 STREAM_END;

In C (Software): ASC Code:

Figure 2: C code with a simple loop compared with ASC
code representing a hardware stream version of the same
loop. Optimization mode setting is for maximum through-
put.

limiting computation to graphics work [2]. Generally pro-
gramming is performed in a graphics oriented language such
as NVIDIA’s Cg or the GL Shader Language. These lan-
guages do not generally allow development in a form that
can be easily applied to other architectures.

The Sony PlayStation 2 is a games console that has
to date achieved sales of over 90 million units. At the core
of the PS2 is the Emotion Engine consisting of a general
purpose MIPS processor with floating point unit and SIMD
extensions, two vector coprocessors and a graphics proces-
sor. The vector units are highly programmable with flow
and branching control, and have their own local memory
filled from main memory by DMA transfers.

4. Compiling programs to GPUs and the PS2

Internally the ASC program is represented by a dataflow
graph. Each assignment statement creates a new connec-
tion in the graph, rather than directly assigning data. The
choice of architecture affects the manner in which the graph
is processed. Architectural differences are transparent to the
programmer in a basic implementation, requiring only the
selection of an appropriate target architecture. As necessary
optimizations on implementations can be performed mak-
ing use of architecture specific extensions.

Translating for the GPU involves separating the data-
flow graph into individual execution kernels with interme-
diate data buffers. Each buffer represents a single variable
over a wide range of time points (a datastream). Each kernel
is converted into an AST representing the language used to
program a GPU fragment program usually used to program
pixel data. In the current version of the system the language
used is Brook for GPUs [3]. The GPU is limited to pure
streaming programs, so data-flow cycles and anything that
depends on them, such as finite state machines, cannot be
implemented in a program targetted at GPUs.

Translating for the PS2 involves taking the entire pro-
gram and implementing it as a vector unit program. The
AST representation of a vector unit program supports both

0 2 4 6 8 10

0.05

0.25

0.5

1

2

4

8

16

32

64

128

Number of data points [100k pts]

E
xe

cu
tio

n
tim

e
[1

00
 s

ec
on

ds
]

Montecarlo simulation execution time

P4
P4 with SSE2
PS2 Vector Units
PS2 CPU
NVIDIA 6800 Ultra
V2−6000−6 FPGA
Buffered FPGA

Figure 3: Montecarlo simulation using a Pentium 4 3.2GHz
CPU using Intel’s C compiler with -O3 optimization and
full optimization including vectorization. We compare with
the same execution running on an NVIDIA 6800 Ultra, the
PS2’s vector units, the PS2 CPU and a Xilinx Virtex2-6000-
6 FPGA with and without on-chip buffering.

single element and vector instructions, such that multiple
datapoints can be operated on simultaneously. Performance
gains are possible as a result of the parallel vector opera-
tions.

5. Performance comparisons

We can use the single base representation to compare the
performance of the architectures on an algorithm. Figure 3
shows the results obtained when comparing an implemen-
tation of a montecarlo simulation on the discussed architec-
tures against an implementation on the Pentium 4. With a
base implementation we can perform simple optimizations
on each target to improve the performance. The “Buffered
FPGA” line on the graph represents an optimization of the
FPGA implementation using on-chip data buffers, which
are easy to implement in ASC. In this case optimization is
necessary as the base Montecarlo implementation includes
a loop which renders hardware pipelining impossible.

References
[1] O. Mencer. ASC, a stream compiler for computing with

FPGAs. IEEE Transactions on CAD, 2006.

[2] NVIDIA Corporation R. Fernando. Trends in GPU evolu-
tion. Eurographics, September 2004.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. SIGGRAPH, 2004.

