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Multi-core architectures

• Require parallel programming
• Must divide computation
• Must communicate data
• High-throughput computation 

– Efficient use of memory 
bandwidth essential

Source: AMD
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Cell's hardware solution

• Target the memory wall:
– Distributed local memories: 256kB each
– Separate data movement from computation using DMA 

engines
• Bulk transfers increase efficiency
• Increased programming challenge:

– Must write data movement code
– Must deal with alignment constraints

• Premature optimisation
– Platform independence is lost

Source: IBM
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Mainstream programming models

• No explicit support for separation of computation from 
data access

• Freely mix computation and data movement
• Complexity of compiler analysis => Difficult to extract 

separation
• Orthogonal issues:

– extracting parallelism
– creating data movement code
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The proposal

• Allow the programmer to express explicitly:
– Separation between data communication and 

computation 
– Parallelism of the computation
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Streams

• Approaches the separation ideal
• Simple kernel applied to each element of a data set
• Each element of stream typically independent of others

– No feedback as a parallel processing model
– Dependencies only on input and output elements
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Parallelism in stream programming

• Independence of executions => simple inference of 
parallelism

• Sliding windows of elements on inputs
– access multiple elements
– parallelism still predictable

• AMD, NVIDIA use a stream model for parallel 
hardware 
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Streams? A 2D convolution filter

• Reads region of input
• Processes region
• Writes single point in the output
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Representing convolution as 1D streams

• One option: flatten 2D dataset
– Requires multiple sliding windows or long FIFO 

structures
• Mapping 2D structures to 1D streams is untidy
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Representing convolution as 2D streams

• Stanford's Brook language uses stencils on 2D shaped 
streams

floats x;
floats2 y;
streamShape(x,2,32,32);

streamStencil(y, x, STREAM_STENCIL_CLAMP, 2, 1, -1, 1, -1);
kernel void neighborAvg(floats2 a, out floats b) {
    b = 0.25*(a[0][1]+a[2][1]+a[1][0]+a[1][2]);
}
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Representing convolution as 2D streams

• Stencil stream passed to kernel
• Treated as if it is a small set of accessible elements
• Limited addressing capabilities

floats x;
floats2 y;
streamShape(x,2,32,32);

streamStencil(y, x, STREAM_STENCIL_CLAMP, 2, 1, -1, 1, -1);
kernel void neighborAvg(floats2 a, out floats b) {
    b = 0.25*(a[0][1]+a[2][1]+a[1][0]+a[1][2]);
}
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Generalising streams

• View streams as:
– A kernel, executed separately on each data element
– A simple mapping of that kernel onto the data – 

elementwise or moving windowed
• This is a simplistic separation of access from 

execution, hence the Decoupled Acess/Execute 
(Æcute) model
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Æcute as a generalisation of streams

• Take a similar kernel-per-element declarative 
programming model

• View in terms of an iteration space that is independent 
of the data sets

• With a separate, flexible mapping to the data
• Mapping allows clean descriptions of complicated data 

access patterns
• Simpler kernel implementations with localised data 

sets
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Execute

• Define an iteration space (e.g. as polyhedral 
constraints)

• Execute a computation kernel for each point in the 
iteration space
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Data access

• On each iteration, the kernel accesses a set of data 
elements

• Accessed elements treated as local to the iteration
• Eases programming of the kernel
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Decoupled access/execute

• Decouple access to remote memory from local 
execution

• Separate mapping of local store to global data
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Multiple iterations

• Decouple access and execute for multiple iterations for 
efficiency

• Manually supporting this flexibility can be challenging
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Add in alignment issues

• DMAs must be adapted to correct for alignment
• Data can often be read with alignment tweaks to fix 

performance
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In code: The iterator
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel( const IterationSpace2D::element_iterator &eit ) {
  // compute mean
  rgb mean( 0.0f, 0.0f, 0.0f );
  for(int w = -K; w <= K; ++w) {
    for(int z = -K; z <= K; ++z) {
      mean += inputPointSet(eit, w, z); // input[x+w][y+z]
    }
  }
  outputPointSet( eit ) = mean / ((2K+1)(2K+1));
}
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In code: Use of access descriptors
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel( const IterationSpace2D::element_iterator &eit ) {
  // compute mean
  rgb mean( 0.0f, 0.0f, 0.0f );
  for(int w = -K; w <= K; ++w) {
    for(int z = -K; z <= K; ++z) {
      mean += inputPointSet(eit, w, z); // input[x+w][y+z]
    }
  }
  outputPointSet( eit ) = mean / ((2K+1)(2K+1));
}
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In code: Computation in the kernel
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel( const IterationSpace2D::element_iterator &eit ) {
  // compute mean
  rgb mean( 0.0f, 0.0f, 0.0f );
  for(int w = -K; w <= K; ++w) {
    for(int z = -K; z <= K; ++z) {
      mean += inputPointSet(eit, w, z); // input[x+w][y+z]
    }
  }
  outputPointSet( eit ) = mean / ((2K+1)(2K+1));
}
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Æcute iteration spaces

• Define an n-dimensional iteration space
• Specify sizes for each dimension

– can be run time defined
• For example:

– IterationSpace<2> iSpace( 0, 0, 10, 10 );
• Over which we can iterate using fairly standard syntax:

– for( IterationSpace<2>::iterator 
     it = iSpace.begin()..... ){...}

• Can treat the iterator loop much as an OpenMP 
blocked look
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Æcute access descriptors

• Define a mapping from an iteration space to an array
• Specify shape and mapping functions
• For example:

– Region2D<Array<rgb,2>,IterationSpace<2>>
  inputPointSet( iSpace, data, RADIUS );

• Which we can access using an iterator
– InputPointSet(it,1,0).r = 3;
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Æcute address  modifiers

• Base address of a region combines:
– iterator address in its iteration space
– address modifier function

• A modifier, or modifier chain, is applied (optionally) to 
each access descriptor:
– Point2D< Project2D1D< 1, 0 > >

  inputPointSet( iSpace, data, RADIUS );
– Projects a 2D address into a 1D address to access 

a 1D dataset
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The Æcute framework

• Implementation of the Æcute model for data movement 
on the STI Cell processor
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Iterating

• PPE takes a chunk of the iteration space
– Blocking is configurable
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Delegation

• Transmits chunk to appropriate SPE runtime as a 
message
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Loading data

• SPE loads appropriate data for the chunk into an 
internal buffer in each access descriptor object
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Loading data

• SPE processes one buffer set while receiving the next 
block to process



27th Jan 2008    |   Ashley Brown 30Lee Howes

Loading data

• DMA loading next buffers operate in parallel with 
computation
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Loading data

• On completion of a block, input buffers cleared, output 
DMAs initiated
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Advantages

• Separation of buffering maintains simplicity
• Double/triple buffering comes naturally when there are 

no data dependent loads
• Remove complexity of manual software pipelining
• Complicated addressing schemes not precluded
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Non-affine addressing

• Simple stencils inadequately flexible
• Partitioning of Iteration space defines parallelism
• Generating complicated addressing schemes is often 

necessary
– Addressing can still be performed externally to the 

computation and automatically pipelined
– Alignment may need to be on a per-element basis if 

relationship inference not possibile.
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The bit reversal

• As used in a radix-2 FFT:
– Performs a complicated, but predictable, 

permutation of a data set
– Input address with bits reversed => output address

• Access descriptors can wrap complicated addressing
– Generate DMA lists
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Æcute performance: CTM filter
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Æcute performance: Matrix/vector multiply
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Æcute performance: Bit reverse
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Conclusions

• Programming model that generalises streaming
• Declarative mapping of computation to data
• Separate kernel implementation working on simple 

data subset
• Further work on:

– Inference of inter-kernel dependencies
– Merging of earlier kernel fusion work
– Targetting different architectures: GPUs
– Compiler support
– Integration with the Sieve system
– Investigating the limits of this kind of specification
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