
The Queen’s TowerThe Queen’s Tower
Imperial College Imperial College

LondonLondon
South Kensington, South Kensington,

SW7SW7

27th Jan 2008 | Ashley BrownLee Howes

Deriving Efficient Data Movement
From

Decoupled Access/Execute
Specifications

Lee W. Howes, Anton Lokhmotov,
Alastair F. Donaldson and Paul H. J. Kelly

Imperial College London and Codeplay Software
January 2009

27th Jan 2008 | Ashley Brown 2Lee Howes

Multi-core architectures

• Require parallel programming
• Must divide computation
• Must communicate data
• High-throughput computation

– Efficient use of memory
bandwidth essential

Source: AMD

27th Jan 2008 | Ashley Brown 3Lee Howes

Cell's hardware solution

• Target the memory wall:
– Distributed local memories: 256kB each
– Separate data movement from computation using DMA

engines
• Bulk transfers increase efficiency
• Increased programming challenge:

– Must write data movement code
– Must deal with alignment constraints

• Premature optimisation
– Platform independence is lost

Source: IBM

27th Jan 2008 | Ashley Brown 4Lee Howes

Mainstream programming models

• No explicit support for separation of computation from
data access

• Freely mix computation and data movement
• Complexity of compiler analysis => Difficult to extract

separation
• Orthogonal issues:

– extracting parallelism
– creating data movement code

27th Jan 2008 | Ashley Brown 5Lee Howes

The proposal

• Allow the programmer to express explicitly:
– Separation between data communication and

computation
– Parallelism of the computation

27th Jan 2008 | Ashley Brown 6Lee Howes

Streams

• Approaches the separation ideal
• Simple kernel applied to each element of a data set
• Each element of stream typically independent of others

– No feedback as a parallel processing model
– Dependencies only on input and output elements

27th Jan 2008 | Ashley Brown 7Lee Howes

Parallelism in stream programming

• Independence of executions => simple inference of
parallelism

• Sliding windows of elements on inputs
– access multiple elements
– parallelism still predictable

• AMD, NVIDIA use a stream model for parallel
hardware

27th Jan 2008 | Ashley Brown 8Lee Howes

Streams? A 2D convolution filter

• Reads region of input
• Processes region
• Writes single point in the output

27th Jan 2008 | Ashley Brown 9Lee Howes

Representing convolution as 1D streams

• One option: flatten 2D dataset
– Requires multiple sliding windows or long FIFO

structures
• Mapping 2D structures to 1D streams is untidy

27th Jan 2008 | Ashley Brown 10Lee Howes

Representing convolution as 2D streams

• Stanford's Brook language uses stencils on 2D shaped
streams

floats x;
floats2 y;
streamShape(x,2,32,32);

streamStencil(y, x, STREAM_STENCIL_CLAMP, 2, 1, -1, 1, -1);
kernel void neighborAvg(floats2 a, out floats b) {
 b = 0.25*(a[0][1]+a[2][1]+a[1][0]+a[1][2]);
}

27th Jan 2008 | Ashley Brown 11Lee Howes

Representing convolution as 2D streams

• Stencil stream passed to kernel
• Treated as if it is a small set of accessible elements
• Limited addressing capabilities

floats x;
floats2 y;
streamShape(x,2,32,32);

streamStencil(y, x, STREAM_STENCIL_CLAMP, 2, 1, -1, 1, -1);
kernel void neighborAvg(floats2 a, out floats b) {
 b = 0.25*(a[0][1]+a[2][1]+a[1][0]+a[1][2]);
}

27th Jan 2008 | Ashley Brown 12Lee Howes

Generalising streams

• View streams as:
– A kernel, executed separately on each data element
– A simple mapping of that kernel onto the data –

elementwise or moving windowed
• This is a simplistic separation of access from

execution, hence the Decoupled Acess/Execute
(Æcute) model

27th Jan 2008 | Ashley Brown 13Lee Howes

Æcute as a generalisation of streams

• Take a similar kernel-per-element declarative
programming model

• View in terms of an iteration space that is independent
of the data sets

• With a separate, flexible mapping to the data
• Mapping allows clean descriptions of complicated data

access patterns
• Simpler kernel implementations with localised data

sets

27th Jan 2008 | Ashley Brown 14Lee Howes

Execute

• Define an iteration space (e.g. as polyhedral
constraints)

• Execute a computation kernel for each point in the
iteration space

27th Jan 2008 | Ashley Brown 15Lee Howes

Data access

• On each iteration, the kernel accesses a set of data
elements

• Accessed elements treated as local to the iteration
• Eases programming of the kernel

27th Jan 2008 | Ashley Brown 16Lee Howes

Decoupled access/execute

• Decouple access to remote memory from local
execution

• Separate mapping of local store to global data

27th Jan 2008 | Ashley Brown 17Lee Howes

Multiple iterations

• Decouple access and execute for multiple iterations for
efficiency

• Manually supporting this flexibility can be challenging

27th Jan 2008 | Ashley Brown 18Lee Howes

Add in alignment issues

• DMAs must be adapted to correct for alignment
• Data can often be read with alignment tweaks to fix

performance

27th Jan 2008 | Ashley Brown 19Lee Howes

In code: The iterator
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel(const IterationSpace2D::element_iterator &eit) {
 // compute mean
 rgb mean(0.0f, 0.0f, 0.0f);
 for(int w = -K; w <= K; ++w) {
 for(int z = -K; z <= K; ++z) {
 mean += inputPointSet(eit, w, z); // input[x+w][y+z]
 }
 }
 outputPointSet(eit) = mean / ((2K+1)(2K+1));
}

27th Jan 2008 | Ashley Brown 20Lee Howes

In code: Use of access descriptors
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel(const IterationSpace2D::element_iterator &eit) {
 // compute mean
 rgb mean(0.0f, 0.0f, 0.0f);
 for(int w = -K; w <= K; ++w) {
 for(int z = -K; z <= K; ++z) {
 mean += inputPointSet(eit, w, z); // input[x+w][y+z]
 }
 }
 outputPointSet(eit) = mean / ((2K+1)(2K+1));
}

27th Jan 2008 | Ashley Brown 21Lee Howes

In code: Computation in the kernel
Neighbourhood2D_Read inputPointSet(iterationSpace, input, K);
Point2D_Write outputPointSet(iterationSpace, output);
...
void kernel(const IterationSpace2D::element_iterator &eit) {
 // compute mean
 rgb mean(0.0f, 0.0f, 0.0f);
 for(int w = -K; w <= K; ++w) {
 for(int z = -K; z <= K; ++z) {
 mean += inputPointSet(eit, w, z); // input[x+w][y+z]
 }
 }
 outputPointSet(eit) = mean / ((2K+1)(2K+1));
}

27th Jan 2008 | Ashley Brown 22Lee Howes

Æcute iteration spaces

• Define an n-dimensional iteration space
• Specify sizes for each dimension

– can be run time defined
• For example:

– IterationSpace<2> iSpace(0, 0, 10, 10);
• Over which we can iterate using fairly standard syntax:

– for(IterationSpace<2>::iterator
 it = iSpace.begin().....){...}

• Can treat the iterator loop much as an OpenMP
blocked look

27th Jan 2008 | Ashley Brown 23Lee Howes

Æcute access descriptors

• Define a mapping from an iteration space to an array
• Specify shape and mapping functions
• For example:

– Region2D<Array<rgb,2>,IterationSpace<2>>
 inputPointSet(iSpace, data, RADIUS);

• Which we can access using an iterator
– InputPointSet(it,1,0).r = 3;

27th Jan 2008 | Ashley Brown 24Lee Howes

Æcute address modifiers

• Base address of a region combines:
– iterator address in its iteration space
– address modifier function

• A modifier, or modifier chain, is applied (optionally) to
each access descriptor:
– Point2D< Project2D1D< 1, 0 > >

 inputPointSet(iSpace, data, RADIUS);
– Projects a 2D address into a 1D address to access

a 1D dataset

27th Jan 2008 | Ashley Brown 25Lee Howes

The Æcute framework

• Implementation of the Æcute model for data movement
on the STI Cell processor

27th Jan 2008 | Ashley Brown 26Lee Howes

Iterating

• PPE takes a chunk of the iteration space
– Blocking is configurable

27th Jan 2008 | Ashley Brown 27Lee Howes

Delegation

• Transmits chunk to appropriate SPE runtime as a
message

27th Jan 2008 | Ashley Brown 28Lee Howes

Loading data

• SPE loads appropriate data for the chunk into an
internal buffer in each access descriptor object

27th Jan 2008 | Ashley Brown 29Lee Howes

Loading data

• SPE processes one buffer set while receiving the next
block to process

27th Jan 2008 | Ashley Brown 30Lee Howes

Loading data

• DMA loading next buffers operate in parallel with
computation

27th Jan 2008 | Ashley Brown 31Lee Howes

Loading data

• On completion of a block, input buffers cleared, output
DMAs initiated

27th Jan 2008 | Ashley Brown 32Lee Howes

Advantages

• Separation of buffering maintains simplicity
• Double/triple buffering comes naturally when there are

no data dependent loads
• Remove complexity of manual software pipelining
• Complicated addressing schemes not precluded

27th Jan 2008 | Ashley Brown 33Lee Howes

Non-affine addressing

• Simple stencils inadequately flexible
• Partitioning of Iteration space defines parallelism
• Generating complicated addressing schemes is often

necessary
– Addressing can still be performed externally to the

computation and automatically pipelined
– Alignment may need to be on a per-element basis if

relationship inference not possibile.

27th Jan 2008 | Ashley Brown 34Lee Howes

The bit reversal

• As used in a radix-2 FFT:
– Performs a complicated, but predictable,

permutation of a data set
– Input address with bits reversed => output address

• Access descriptors can wrap complicated addressing
– Generate DMA lists

27th Jan 2008 | Ashley Brown 35Lee Howes

Æcute performance: CTM filter

27th Jan 2008 | Ashley Brown 36Lee Howes

Æcute performance: Matrix/vector multiply

27th Jan 2008 | Ashley Brown 37Lee Howes

Æcute performance: Bit reverse

27th Jan 2008 | Ashley Brown 38Lee Howes

Conclusions

• Programming model that generalises streaming
• Declarative mapping of computation to data
• Separate kernel implementation working on simple

data subset
• Further work on:

– Inference of inter-kernel dependencies
– Merging of earlier kernel fusion work
– Targetting different architectures: GPUs
– Compiler support
– Integration with the Sieve system
– Investigating the limits of this kind of specification

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

