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Abstract
Modern processors are evolving into hybrid, heterogeneous pro-
cessors with both CPU and GPU cores used for general purpose
computation. Several languages, such as BrookGPU, CUDA, and
more recently OpenCL, have been developed to harness the poten-
tial of these processors. These languages typically involve control
code running on a host CPU, while performance-critical, massively
data-parallel kernel code runs on the GPUs.

In this paper we present Kite, a rethinking of the GPGPU pro-
gramming model for heterogeneous braided parallelism: a mix of
task and data-parallelism that executes code from a single source
efficiently on CPUs and/or GPUs.

The Kite research programming language demonstrates that de-
spite the limitations of today’s GPGPU architectures, it is still pos-
sible to move beyond the currently pervasive data-parallel models.
We qualitatively demonstrate that opening the GPGPU program-
ming model to braided-parallelism allows the expression of yet-
unported algorithms, while simultaneously improving programmer
productivity by raising the level of abstraction. We further demon-
strate Kite’s usefulness as a theoretical foundation for exploring
alternative models for GPGPU by deriving task extensions for the
C-based data-parallel programming language OpenCL.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

General Terms Languages, tasking models, experimentation

Keywords GPGPU, compiler, work-stealing, concurrency ab-
stractions

1. Introduction
The future is already here—it’s just not very evenly distributed.

William Gibson

Following the single-core and multi-core revolutions there is
now a new emerging era of computing: heterogeneous systems.
Heterogeneous devices are no longer simply the realm of com-
puter architecture classes or embedded developers, but are acces-
sible to mainstream programmers. Hardware limitations now con-
strain both single-core and multi-core systems (see Figure 1) and
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Figure 1. Three Eras of Processor Performance

it is unclear if these can be overcome. Heterogeneous systems are
not without their own problems. Today, they suffer from high com-
munication overheads (such as that imposed by the PCIe interface)
and the lack of any effective established performance-portable pro-
gramming model.

Many forms of parallelism are present within individual ap-
plications. For example, Figure 2 shows a single job frame from
DICE’s game Battlefield: Bad Company 2. This frame shows a
mixture of both task- and data-parallelism, a form of parallelism
Lefohn [12] calls braided parallelism. This is only one frame; a
game like Bad Company 2 includes numerous types of parallelism,
including:

• Concurrent threads for user interfaces and IO;
• Task parallelism for frame decomposition and AI;
• Different granularities of data-parallelism for the physics and

particles systems; and,
• Parallel rendering of graphics.

While there is clearly a large amount of parallelism in such an ap-
plication, it is by no means embarrassingly parallel. While there are
embarrassingly parallel components, such as particle systems and
graphics rendering, in general, work will be dynamically generated
and is unlikely to be regular in nature.

There are numerous programming languages and libraries for
building applications with braided parallelism in a multi-core envi-
ronment, including Intel’s Thread Building Blocks (TBB) [22] and
Microsoft’s Task Parallel Library (TPL) [13] for .NET4. However,
there is a stark lack of support for braided parallelism in today’s
popular programming models for GPGPU computing, promoted
by NVIDIA’s CUDA [17] and Khronos’ Open Compute Language
(OpenCL) [19]. CUDA and OpenCL are designed around execution
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Figure 2. Job frame from DICE’s Battlefield Bad Company 2
(PS3)

of multi-dimensional data-parallel grids and while each enqueued
kernel instance may be viewed as a data-parallel task, the require-
ment to manage queued entities on the host acts as a limiting factor
in scaling performance on a range of devices.

We demonstrate a recursive, task-parallel programming model
for GPGPU environments, implemented in a new, higher-order pro-
gramming language called Kite. We then show its practicality by
describing a compilation strategy from Kite to OpenCL. Kite im-
proves on existing approaches for GPGPU programming both by
addressing issues of load imbalance and by supporting nested par-
allelism through recursive task creation. In designing Kite, we drew
from a number of existing languages, such as Cilk [5], ML [16]
and NESL [4], and libraries, including Intel’s TBB and Microsoft’s
TPL. However, unlike most previous approaches, parallelism is the
default in Kite. Rather than relying on explicit introduction and
elimination of parallelism, we treat all task invocations as paral-
lel and automatically introduce synchronization when required. For
example, consider the following simple example of Kite code:

task fib(n: int): int {
if (n < 2) {

return n;
} else {

return fib(n-1) + fib(n-2);
}

}

This example should seem unsurprising, if inefficient. However,
because of Kite’s parallel-by-default semantics, the recursive calls
to fib within the body of the else block are parallel invocations;
intuitively, fib “waits” for its subtasks to return before computing
the sum and returning itself. While this model is unusual, there is
no particular reason that it could not be adopted by other languages.
However, targeting OpenCL imposes additional limitations on our
implementation, as OpenCL does not support many of the features
traditionally used in compiling similar languages, including:

• Function pointers;

• Dynamic allocation; and,
• Call stacks.

To account for these missing features, Kite’s compilation pipeline
differs from more traditional compilers. A Kite program, presum-
ably including a number of (possibly nested) tasks and multiple
recursive invocations, is compiled to a single function (the uberker-
nel) which includes all the code paths in the original program. We
then use a memory-aware extension to a traditional work-stealing
task queue to support (recursive) task invocation: invocation trans-
lates to enqueueing a new task for execution, and the program itself
is executed by repeatedly dequeueing and executing tasks.

As a further simple motivating example for Kite, consider a tree-
based algorithm such as that used for Barnes-Hut simulation [2].
It’s easy to see that in this sort of algorithm the amount of paral-
lelism in the system increases as we descend through the tree. On
a highly parallel device operating over such a structure involves
tradeoffs. One option is that we create the full amount of paral-
lelism at the top of the tree (assuming we know how many leaves
we have) and run multiple threads on the same nodes at the top,
branching differently as we go down. On the way up we require
synchronization primitives to recombine return values. The lack of
a large, efficient stack on such highly parallel systems means that
any efficient implementation requires additional information in the
tree to provide links to support moving back up the tree or to show
which node to move to next in a depth-first scan. In addition, where
we have unnecessary replication of work we are wasting compute
resources.

Kite improves this model by representing computation as a se-
ries of enqueued tasks, performing synchronization implicitly via
continuations; this fills the system in a dynamic fashion that will
naturally load balance. By not filling the device with replicated
work at all stages we also allow other tasks to use idle resources
in parallel with the narrower parts of the tree. The textual represen-
tation of the program is improved by looking almost identical to
a recursion-based functional example: parallelism is naturally ex-
tracted during compliation rather than having to be carefully and
confusingly designed in.

Many of the ideas that underlie the implementation of Kite
are equally applicable in more traditional GPGPU programming
models. To demonstrate this, we also developed an extension to
OpenCL itself, called Tasklets. While not including Kite’s parallel-
by-default model or automatic synchronization, Tasklets introduce
notions of task invocation and synchronization while only requiring
a small number of changes to the OpenCL API and OpenCL C
device language.

In summary this paper makes the following contributions:

• A general purpose model for braided parallelism, supporting
light-weight task and data parallelism, implemented in the
programming language Kite. Kite addresses not only existing
GPGPU environments, but also emerging heterogeneous plat-
forms that closely integrate CPU and GPU cores on the same
die.

• A translation from Kite into OpenCL, demonstrating that it can
be implemented on existing hardware and that a single source
program can effectively target both CPUs and GPUs.

• An extension of OpenCL, called Tasklets, to support explicit
task parallelism.

• An implementation of task parallelism that uses an extension of
Chase-Lev’s work-stealing algorithm [7] to account for reduced
memory traffic and better utilization of memory locality on
GPU hardware.

2 2012/9/5



To our knowledge this is the first time a fine-grained general pur-
pose tasking model has been described for the GPGPU environ-
ment.

The paper continues as follows. First (§ 2) we describe the back-
ground of parallel computing, and GPGPU programming in partic-
ular, and describe models and languages related to our work. We
then (§ 3) describe Kite, our high-level programming language, and
its model of parallel computation. We describe its implementation
(§ 4), including both the transformations necessary to translate a
Kite program into OpenCL (§ 4.1) and our runtime support for task-
ing (§ 4.2). Finally we describe OpenCL tasklets (§ 5) and conclude
(§ 6).

2. Related Work
Numerous high-level tasking languages and libraries have been
proposed [5, 13, 22]; however, for the most part these have targeted
multi-core CPU environments, often making design choices that
do not adapt well to the throughput style architectures of modern
GPUs. While there has been some work on evolving the GPGPU
programming model beyond massively data-parallel computations,
it has been with a domain-specific focus (most commonly in the
area of graphics) and these systems have focused on optimization
and performance for the specific application domain instead of
providing general purpose computing facility.

Probably the closest work we are aware of is NVIDIA’s gen-
eral purpose ray tracing engine, OptiX [20]. OptiX implements
a programmable ray-tracer, providing a single-ray programming
model supporting recursion and dynamic dispatch, and thus allow-
ing its user to build a variety of ray tracing-based applications. Op-
tiX and Kite share a number of implementation techniques, par-
ticularly their implementation of light-weight tasks via persistent
threads and support for recursion via continuations. However, un-
like Kite, OptiX targets a specific application domain on a specific
platform. While this means that the OptiX compiler has access to
domain-specific information to drive optimization, it also limits its
applicability. Similarly, while OptiX represents a significant step
in GPU-based ray tracing, it does not necessarily compare well
against CPU-based ray tracers [15]. In contrast, Kite has been de-
signed to support general-purpose computation and to provide per-
formance portability across a variety of platforms, from CPUs and
GPUs to the emerging heterogeneous platforms. While this gener-
ality may limit the number of optimizations available to the Kite
compiler, we believe that it more than compensates by increasing
the number of possible applications.

To date general purpose programming language design for
GPUs has focused on data-parallel decomposition, with early work
relying on rendering full screen quads to execute pixel shaders
(traditional intended to color pixels) written in GLSL [21]. Later,
streaming and vector algebra languages were proposed [6, 14] that
avoided graphics terminology but were otherwise primarily sug-
ared pixel shaders, with applications of these languages continuing
to have a graphics focus. CUDA [17] and OpenCL [19] recast this
model within the C/C++ language framework, providing program-
mers with a more familiar environment, and added support for
scattered memory writes.

There are a number of languages and libraries that provide task-
parallel programming models targeting multi-core CPU environ-
ments, including Cilk [5], Thread Building Blocks (TBB) [22], and
the .NET4 Task Parallel Library (TPL) [13]. Like Kite, these lan-
guages approach parallel programming from a high-level language
perspective, either building parallel constructs into the language
or expressing them using tools such as object-oriented classes and
lambda abstractions. Cilk and TBB expose an underlying model of
threaded parallelism, with explicit operations to spawn new parallel
tasks and synchronize with spawned tasks; in contrast, Kite makes

no assumptions about the underlying model, and both spawning
new tasks and synchronization are implicit. TPL exposes a similar
model to Kite, but is built as a library rather than using features of
the underlying language; while this fits their target, it limits the pos-
sibilities of their translation; in contrast, the translation from Kite
to OpenCL relies on whole-program transformations that can only
be performed by a compiler.

Kite models braided parallelism within a shared memory model,
using conventional synchronization primitives, such as locks and
critical sections, when additional communication is necessary.
Kite’s use of shared memory primitives reflects their ease of ex-
pression in our target language, OpenCL, rather than any particular
belief that they ought to form part of a concurrent language de-
sign. We acknowledge the claim of Reppy [23], among others,
that shared memory models do not ease the burden of developing
modular concurrent software, but suggest that the design of more
expressive concurrency operations (such as those of Concurrent
ML) is orthogonal to our goals in this paper.

Hou et al. describe a container-based approach to performance
portability across heterogeneous systems [10]. Their approach re-
lies on source code containing explicit data-parallel constructions
and using a limited number of provided container structures. Their
run-time system selects different versions of code to implement
these constructs in different environments. While their system pro-
vides performance portability, it does so at the cost of limited ex-
pressiveness: their approach is unable to express nested parallelism.
However, we believe the notion of using containers to express se-
mantic guarantees is valuable, and hope to explore its application
in Kite in future work.

NESL [4] is a data-parallel language loosely based on the func-
tional language ML. Like Kite, NESL supports nested parallelism
and encourages parallel expression of all computations. However,
NESL expresses parallelism primarily at the sequence level, rather
than at each function invocation. As a result, tree-driven algorithms
(and some other recursive algorithms) may be easier to express in
Kite than in NESL. Furthermore, NESL is targeted solely at multi-
core CPU environments with high communication bandwidth be-
tween processors; in contrast, Kite can target the GPGPU environ-
ment, where communication between processors can introduce ex-
pensive sychronization.

Finally, while translating Kite to OpenCL, we use an interme-
diate representation that strongly resembles the joins of the join
calculus [9]. While it would be possible to expose the join structure
in the surface Kite language, and indeed our prototype implemen-
tation does, it is never necessary to express joins directly in Kite;
rather, necessary synchronization points can be automatically in-
serted by a primarily type-driven compilation process. Existing im-
plementations of the join calculus [8, 11, 18] are targeted at multi-
core CPU, rather than GPGPU, environments.

3. The Kite Programming Model
Kite is a recursive, higher-order, statically-typed programming lan-
guage developed to explore how ideas of task and braided paral-
lelism can be implemented and used in a GPGPU or heteroge-
neous environment. This section describes Kite and its program-
ming model. We begin by briefly discussing Kite’s syntactic (§ 3.1)
and typing (§ 3.2) rules; we expect that practitioners familiar with
conventional procedural and functional languages will find little of
surprise in these sections. Then (§ 3.3), we discuss task parallelism
in Kite: how it is introduced, how it is eliminated, and the (relatively
few) guarantees of sequential execution in Kite. Finally (§ 3.4), we
discuss expressing data parallelism in Kite, both using the normal
language features and using a special data-parallel map statement.
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t ::= x base types
| x〈~t〉 generic type applications

p ::= x : t parameter/field specifications
f ::= x = e labeled field values
e ::= x | c | e(~e) variables, constants, applications
| | e.x | e[e] selection
| (~e) tuple construction
| t{~f} struct and union constructors
| new〈t〉(~e) array constructors
| [e, e..e] range constructors
| task (~p) : t {~s } anonymous tasks
| task e futures

d ::= p = e value declarations
| task x(~p) : t {~s} task declarations
| struct {~p } struct declarations
| union {~p } union declarations

b ::= x x : ~s case statement branches
s ::= e; | d; expressions, declarations
| return e; return from task
| x← e; assignments
| s then s sequencing
| if (e) {~s } else {~s } conditionals
| case (e) {~b } union deconstruction
| for (x = e[x]) {~s } sequential for-each loop
| map (x = e[x]) {~s } parallel for-each loop

Figure 3. The Kite concrete syntax. We assume non-terminals
x for identifiers and c for constants. Note that our actual parser
allows some obvious variations on the syntax presented here, such
as omitting semi-colons immediately preceding or following right
braces, omitting else blocks from if statements, or omitting types
in value declarations.

3.1 Kite Syntax
We present an (abbreviated) syntax for Kite in Figure 3. Kite’s
syntax is intended to be broadly familiar to C/C++ programmers,
while adding some notation to support Kite-specific parallelism
notions or to discourage common C programming mistakes. We
summarize the changes next.

Higher-order features. Kite supports some higher-order pro-
gramming techniques. We support creating anonymous tasks (for
instance, task (x:int):int { return x + 1; } is a task that
returns the increment of its argument), including tasks in the pa-
rameter lists of other tasks (using the syntax task<t,u,...,v>
for the type of a task that takes parameters of types t, u, . . . , and
returning a value of type v), and passing tasks as arguments to other
tasks (which requires no special syntax).

Extended support for structures and unions. Kite extends the
C/C++ notion of structures and unions to more closely match the
algebraic data types of languages like ML, while still retaining C-
like guarantees of the structure of the underlying representation.
Union values in Kite are automatically tagged with the branch
of the union used to construct them; this makes misinterpreting
union values impossible. We have added a case statement to Kite to
support deconstructing unions. Kite supports construction of new
structure and union values in any expression context, whereas C
only permits their construction in declaration statements.

Extended support for collection types. Kite provides extended
support for iterating over and operating with collection types. The
looping constructs in Kite (for and map) iterate over collections,
computing bounds and index values automatically (while still al-
lowing the user access to element indices if needed). For instance,

if v is a collection of ints, we could initialize each element to its
position in the collection as follows:

for (x = v[i]) { x <- i; }

Note that the element (but not the index) bound by the for loop
is an alias: assignments to it are equivalent assignments to the
corresponding element of the collection.

Parallelism. Finally, some syntactic features of Kite expressly
support parallel programming. The then keyword introduces or-
dering dependencies between statements that might not otherwise
have them, while the map keyword describes loops that are seman-
tically identical to for loops but introduce additional parallelism.
We will return to these constructs in sections 3.3 and 3.4, respec-
tively.

3.2 Kite Typing
Kite’s typing rules are as unsurprising as its syntax; in the interest
of space, we omit them here. However, we do describe one aspect
of the type system as it relates to Kite’s model of parallelism.

As first described in the introduction, Kite uses a parallel-by-
default model of execution. We reflect this by the introduction and
elimination of future types in the type system. One example of the
introduction of future types is in the typing rule for applications:

` e : task〈~t, r〉 ` ei : ti
[APP]

` e(ei) : future〈r〉
(Our full typing rules include environments mapping variables and
structure fields to types; we have elided those environments as they
do not contribute to the rules we are presenting.) In turn, future
types can be eliminated by applications of the non-syntax-directed
FORCE rule:

` e : future〈t〉
[FORCE]

` e : t
The FORCE rule is intended to make the introduction of future
types ultimately transparent to the user, and, in fact, we have needed
no explicit futures in our work with Kite so far. However, while
transparent, it also serves to indicate both the locations where par-
allelism could be introduced (which correspond to the introduction
of future types) and the locations where parallelism must be elim-
inated (at the uses of the FORCE rule). It would be possible to im-
plement Kite directly in this fashion; however, waiting for other
computations to finish is expensive on the GPU, both because it
requires access to shared memory, itself an expensive operation,
and because it could potentially idle entire vector cores when only
some of the channels need to wait. As a result our implementation
of Kite takes a different approach, albeit still guided by the mean-
ings of future and FORCE we have just described.

3.3 Task Parallelism in Kite
This section builds on the previous description of potential paral-
lelism to describe the parallel interpretation of Kite programs. In
particular, we describe the computation of a task graph from a Kite
program. The task parallelism in any piece of Kite code arises from
disconnected nodes in the task graph being run in parallel.

We begin with an example. In the introduction, we presented the
following implementation of the Fibonacci function:

task fib(n:int):int {
if (n < 2) {
return n;

} else {
return fib(n-1) + fib(n-2);
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g ::= (
−−−→
(id, n),~e) graphs

e ::= (id, id) edges
n ::= stmt s non-compound statements
| if (e) g g conditionals
| case (e)

−−−−−→
(id, id, g)

| for (x = e[x]) g iteration
| map (e = x[e]) g
| task (~p) t g task declarations

Figure 4. The syntax for our intermediate language of nested task
graphs. We assume a syntactic class of unique identifiers, indicated
by id. Non-terminals e, s, x are used as in Figure 3. We will main-
tain the invariant that nodes in a graph are listed in topological
sorted order.

}
}

The opportunity for parallelism arises from the two recursive calls
to fib in the else block. We could represent this with the follow-
ing task graph:

fib(n-1) fib(n-2)

root

+

n

x y

n

Note that, in general, we do not assume any sequencing between
expressions without data dependencies, regardless of their relative
placement in the source code. For example, the following code:

task example() {
print(1); print(2);

}

would give rise to the task graph

print(1) print(2)

root

As suggested by the task graph, the program could equally
validly generate the output 12 or 21.

In the remainder of this section, we describe the current algo-
rithm we use to compute task graphs from Kite programs. We do
not consider this algorithm a specification of the maximum par-
allelism possible from a given Kite program; however, we do not
believe any present shortcomings are fundamental to the approach.

Our goal is to describe a transformation from Kite statements, as
described in Figure 3 to a language of nested task graphs (NTGs),
described in Figure 4. Intuitively, each node in a task graph corre-
sponds to a single statement in the Kite source; we nest complete
task graphs inside some nodes corresponding to compound Kite
statements.

We separate the construction of these graphs into three stages,
described in the next sections. First (§ 3.3.1), we rewrite Kite source

code to separate potentially parallel expressions into separate state-
ments; second (§ 3.3.2), we construct task-graph nodes for each
statement, while simultaneously computing dependencies for each
node; finally (§ 3.3.3), we use the dependency information to con-
nect the nodes into a graph. The latter two steps are necessarily
mutually recursive—for example, to compute the dependency for
an if statement, we have to have finished the graph construction
for its alternatives. We also (§ 3.3.4) discuss a further graph trans-
formation that would expose additional parallelism, but potentially
at the cost of additional complexity in the graph structure.

3.3.1 Rewriting
We begin by introducing separate statements for each potentially
parallel expression; this amounts to rewriting to a type of A-normal
form that allows function arguments to be any non-parallel expres-
sion. For example, we would rewrite the Fibonacci function as:

task fib(n:int):int {
if (n < 2) {
return n;

} else {
x, y: int;
x <- fib(n - 1);
y <- fib(n - 2);
return x + y;

}
}

where x and y are fresh variables. We perform several additional
transformations at the same time, such as renaming variables to
avoid shadowing, moving type declarations to the top level, and
lifting anonymous tasks to named task declarations in the same
block. These translations are fairly mechanical, and we will not
describe them further.

3.3.2 Dependency and Node Construction
After rewriting, we construct one NTG node per statement. Addi-
tionally, we compute data dependencies for each node. We define
data dependencies using the following grammar, where X and Y are
sets of variables:

∆ ::= X → Y non-parallel computations
| X  Y parallel computations

Let α, β range over {→, }, and let → be ordered before  .
We can now define the sum and composition of dependencies as
follows:

(XαY) + (X′βY ′) = (X ∪ X′) (max{α, β}) (Y ∪ Y ′)

(XαY) ; (X′βY ′) = (X ∪ (X′ \ Y)) (max{α, β}) (Y ∪ Y ′)

The mapping of statements to nodes is straight-forward. We
map non-compound statements (such as value declarations, expres-
sion statements, or return statements) to stmt nodes. Compound
statements are mapped to the corresponding node types; for in-
stance, if statements are mapped to if nodes. As if nodes repre-
sent the alternatives as graphs, construction of if nodes is necessar-
ily recursive with the procedure for linking nodes into subgraphs
(§ 3.3.3). The mapping is described in Figure 5.

We also compute data dependencies for nodes as we create
them. We describe the computation of data dependencies by the
set of functions δ in Figure 6, mapping from expressions, nodes,
and graphs to dependencies. We make use of a function fv mapping
from expressions or statements to their free variables; it is defined
in the usual way, and we omit its definition here.

In (1), we define a dependency for expressions. This definition
only serves to simplify later definitions; there are no NTG nodes
corresponding to expressions. In particular, the dependency for an
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node(if (e) {~s} else {~s′}) = if (e) graph(~s) graph(~s′)

node(case (e) {
−−−→
b x : ~s}) = case (e) {(bi, xi, graph(~si))}

node(for (x = e[x′]) {~s}) = for (x = e[x′]) graph(~s)

node(map (x = e[x′]) {~s}) = map (x = e[x′]) graph(~s)

node(s) = stmt s

Figure 5. The mapping from Kite statements to NTG nodes, de-
fined by cases.

δ(e) = fvs(e)→ ∅ (1)

δ(stmt (f (~e))) = (
⋃

fvs(ei)) ∅ (2)

δ(stmt (l← f (~e))) = (lfvs ∪ (
⋃

fvs(ei))) lflvs (3)

where (lflvs, lfvs) = flvs(l)

δ(stmt (l← e))) = (lfvs ∪ fvs(e))→ lflvs (4)

where (lflvs, lfvs) = flvs(l)

δ(stmt (x : t = e)) = fvs(e)→ {x} (5)

δ(stmt s) = fvs(s)→ ∅ (6)

δ(if (e) g g′) = δ(e) + δ(g) + δ(g′) (7)

δ(case (e)
−−−−→
(b, x, g)) = δ(e) +

∑
((Xi \ {xi})αiYi) (8)

where XiαiYi = δ(gi)

δ(for (x = e[x′]) g) = δ(e) + ((X \ {x, x′})αY) (9)

where XαY = δ(g)

δ(map (x = e[x′]) g) = δ(e) + ((X \ {x, x′}) Y) (10)

where XαY = δ(g)

δ((
−−−→
(id, n), e)) = δ(n0) ; δ(n1) ; · · · ; δ(nm) (11)

Figure 6. The mappings from expressions, nodes, and graphs to
dependencies, defined by cases.

expression statement is not (necessarily) the same as the depen-
dency for the expression itself.

Next, we define the dependencies for statements. There are three
factors that complicate this definition: first, we must determine
when statements can introduce parallelism; second, there is some
complexity in the dependencies of assignments; and third, the de-
pendency of a nested node must take the dependency of its sub-
graphs into consideration. We address each of these concerns in
order.

First, we must take account of which statements can introduce
parallelism. This information is encoded in the types of expres-
sions; however, during the rewriting stage (§ 3.3.1) we split each
potentially parallel expression into its own statement. As a result,
in this phase we can determine potential parallelism with simple,
structural checks. Parallelism appears in NTG statements as top-
level applications or as assignments from top-level applications.
This is reflected by the dependencies in (2) and (3).

Next, we address the dependencies computed for assignment
statements. For assignments with simple variables on the left-hand
side (LHS), this is quite simple: the free variables of the right-
hand side (RHS) determine the free variables of the LHS. However,
it is less simple when the LHS includes array or field selectors.
Consider the statement:

flvs(x) = ({x}, ∅)
flvs(e.f ) = (eflvs, fvs(e))

where (eflvs, efvs) = flvs(e)

flvs(e[e′]) = (eflvs, efvs ∪ fvs(e′))

where (eflvs, efvs) = flvs(e)

Figure 7. The flvs function, defined by cases, returns two sets of
free variables for an LHS expression, corresponding to the variables
determined by and determining an assignment to that LHS.

x[i] <- e;

The evaluation of this statement depends on the free variables of
e, the free variables of i, and the free variables of x (as the values
after the assignment of all components of x not indexed by i are the
same as they were before the statement). The statement determines
the free variables of x. To express this dependency, we introduce an
auxiliary function flvs, defined in Figure 7. This function computes
two sets of free variables from an LHS expression, corresponding
to the variables determined by and determining an assignment to
that LHS. This function is used in computing the dependencies for
assignment in (3) and (4).

Finally, we address nested nodes. Compound statements, such
as conditionals or loops, give rise to nested task graph nodes; to
compute the dependency of such a nested node, we need to know
the dependency of their subgraphs. (11) gives one way to compute
the dependency of a graph; composing the dependencies of all the
nodes is valid because we maintain the invariant that the nodes
of a graph are stored in topological sorted order. (7)–(10) use the
dependencies of subgraphs when computing the dependencies of
nested nodes; there is additional work in (8)–(10) to handle bound
variables introduced by the compound statement.

3.3.3 Node Linking and Graph Construction
The prior section described transforming statements into graph
nodes; it remains to link those nodes together to form a complete
task graph. Our approach here is relatively simple, and is based
solely on the dependencies of nodes without having to make further
reference to the structure of statements. If a node has dependency
XαY , we construct edges to that node from:

• The nearest earlier node that determines each variable in X, and
• All earlier nodes that depend on variables in Y .

This approach works because Kite only supports structured flow of
control, and all control flow is captured in compound statements
that give rise to nested graph nodes. Because we can rely on struc-
tured flow of control, a node constructed from a particular state-
ment need never depend on the nodes constructed from statements
that followed it in the source; similarly, because branches are en-
closed within nested nodes, a node never needs to depend on more
than one node for the value of a particular variable.

3.3.4 Task Graph Optimization
This section demonstrates the flexibility of the task-graph-based in-
termediate language by describing several optimizations that could
be performed on task graph. While this list is hardly complete, and
we hope to return to further graph transformations in future work,
we believe this shows some of the potential of our present approach.

Tail-call optimization. Consider the following sequence of task
invocations:

x <- f();
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y <- g(x);
return h(y);

We might hope to avoid much of the overhead of the task calls in
this block of code. As we invoke each task in turn (there is no op-
portunity for parallelism), and the input to each task is determined
by the previous task, we could reuse the same stack frame (or corre-
sponding abstraction the GPU, which lacks a traditional call stack)
for each of the tasks f, g and h. The opportunities for this kind of
optimization are evident in the task graph. In general, any time the
following pattern is present, the same task frame can be used to
evaluate graph nodes a and b.

a

b

...

...

Graph flattening. While encapsulating conditionals in nested
task graph nodes has advantages, as discussed in the previous sec-
tion, it can also hide parallelism. Consider the following contrived
example:

x <- f(); y <- g();
if (b) {
x <- h(x);

} else {
y <- h(y);

}
j(x); j(y);

where we assume that b is computed by some prior expression. We
would generate the following task graph for this block:

if(b)

f() g()

j(x) j(y)

However, note that we have lost some parallelism in this con-
struction. Should b be true, the computation of h(x) has no reason
to wait for the computation of y, and the computation of j(y) has
no need to wait for the computation of h(x). A similar argument
holds if b is false. In this case, it would be appealing to “flatten”
the nested node, exposing the alternatives and increasing the paral-
lelism. We hope to investigate approaches to this kind of flattening,
and other possible applications of graph flattening, as future work.

3.4 Data Parallelism in Kite
Kite’s support for task parallelism is sufficient to encode some
patterns of data-parallel computation. For instance, recursively ex-
pressed algorithms, such as many algorithms over tree-like data

structures or divide-and-conquer style algorithms, are naturally
data-parallel in Kite. This section describes an additional, explic-
itly data-parallel construct in Kite and discusses how it differs from
other features of the language and why it might be preferable in
some use cases.

We begin with a motivating example. Suppose that we have four
instances of the same task running in parallel, which we will refer
to as tasks A through D. Each of these tasks will issue two recursive
calls, creating two more tasks—A1 and A2, B1 and B2, etc. As the
tasks are executing in parallel, we would expect to encounter the
recursive calls at the same time in each task, so the sequence of
recursive calls will be A1, B1, . . . , C2, D2. We refer to this pattern
as column-major dispatch. It might be desirable instead to treat all
the recursive calls from a single task together—that is, to generate
the sequence of calls A1, A2, . . . , D1, D2—a pattern we call row-
major dispatch.

Both dispatch methods can be preferable, depending on memory
access patterns and SIMD-fashion execution. Continuing the earlier
example, suppose that the recursive calls made by each task access
adjacent areas of memory: for example each task is generating
work to process a further level of a tree data structure. In that case,
executing the tasks A1 and A2 simultaneously could lead to fewer
memory accesses, better cache locality, or more efficient mapping
of control flow to a SIMD unit. On the other hand, if each task is
generating a single subtask or a set of different subtasks that would
cause divergent control flow then combining the work generated
by a set of tasks in column-major form would be preferable. This
approach aims to support performant mappings of the language
across architectures using declarative information rather than hand
tuning.

Kite provides two otherwise-identical looping constructs to sup-
port row-major and column-major dispatch: the for and map state-
ments, respectively. Both have for-each-like syntax, allowing ac-
cess to the elements of a collection and their indices while exclud-
ing the possibility of off-by-one errors. For example, if v is a col-
lection of ints, the following code initializes each element of the
collection to its index:

for (x = v[i]) { x <- i; }

Note that x is an alias to an element of the collection, so x does not
require new allocation and assignments to x update the collection
itself. As indicated by (9, Figure 6), the for loop does not of itself
introduce new parallelism, so this loop will run in sequence within
the enclosing task. On the other hand, as indicated by (10, Figure 6),
the map loop does introduce potential parallelism regardless of the
parallelism of its body. So, the loop

map (x = v[i]) { x <- i; }

could execute in parallel, even though the loop body contains no
task applications or other parallelism-introducing constructs.

Kite’s looping constructs can be used to introduce row- and
column-major dispatch over collections. For example, consider the
following loops:

for (x = v[i]) { f(x); }
map (x = v[i]) { f(x); }

The for loop invokes f on each element of v, in sequence. If mul-
tiple instances of the loop were running on different collections in
parallel, all the work for the first elements of the respective col-
lections would be invoked first, then the work for the second ele-
ments, and so on. This results in column-major dispatch. On the
other hand, the map loop begins by introducing one task for each
element of the collection. These tasks are dispatched in parallel.
Each of those tasks, in turn, invokes the work for that element,
leading to row-major dispatch. While it might seem that we have
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also introduced extra work, in the form of the extra task per collec-
tion element, we would expect that the optimizations discussed in
§ 3.3.4 would eliminate much of the overhead.

4. Kite Implementation
4.1 Kite-to-OpenCL Translation
The previous section described a translation from Kite programs to
nested task graphs. Unfortunately, this translation is not enough to
describe the execution of Kite programs in a GPGPU environment.
In particular, we cannot be sure that all the inputs to a particular
graph node will be available at the same time. To avoid the need
for a blocking wait, we use a translation inspired by continuation-
passing style to collect the arguments to a particular graph node.
Once all the arguments are available, the node can be evaluated.

Intuitively, our transformation works as follows. First, we iden-
tify locations at which CPS translation is necessary, by looking for
the following pattern in the generated task graph (where we anno-
tate the nodes by the arrow in their dependencies):

A : ⤳

B : α 

...

This represents a case where the remainder of the computation
(the tree below node B) has to wait for the result of the computation
in node A. Here, we generate a new node, B′, which contains the
old node B and the subgraph below it. We call this node the con-
tinuation. We then perform a standard continuation-passing style
transformation on A giving A′: instead of returning, it takes a con-
tinuation parameter and invokes that continuation with its result.
The resulting graph resembles the following:

A’ : ⤳

B’ : →  ...

Regardless of the original annotations in the subgraph below B,
the annotation of B′ is →: building a continuation does not intro-
duce any parallelism. As a result, we have eliminated the need to
wait for the result of A. By iteratively applying this transformation
from the bottom of the task graph up, we can eliminate all points
where one computation might have to wait for another to complete.
At that point, the program can be translated into OpenCL. While
intuitively simple, there are a number of issues that arise in per-
forming this translation. The remainder of this section discusses
some of those issues.

Multiple inputs. The previous section assumed that there was a
single value flowing into B; the more common case in actual Kite

programs is that there are multiple parallel computations that “join”
at later nodes. For instance, the Fibonacci example discussed earlier
(§ 3.3) would give rise to the following graph:

⤳

→ 

⤳

→ 

n n

x y

The bottom node of the graph has to wait for two parallel com-
putations to finish; we encode this by creating a two-parameter con-
tinuation. This introduces an additional twist: each parallel compu-
tation has to write its result into the appropriate slot of the con-
tinuation; however, the parallel computations are both instances of
the same task. We capture this by introducing a new type, called
a result, that pairs a continuation with an index into its argument
vector. The CPS transformation of tasks transforms them to take
result arguments rather than continuation arguments. When a task
completes, it writes its return value into the argument slot indicated
by its result parameter and runs the continuation only if all its ar-
gument slots are filled.

Multiple outputs. It is also likely that parallel nodes have multi-
ple outputs. Consider the following code fragment and associated
task graph:

y <- f(x);
print(y);
z <- f(y);
print(z);

⤳

→ 

⤳

→ 

There are two nodes waiting for the result of the first f compu-
tation, while only one waits for the result of the second f computa-
tion. We handle this by counting the number of outputs from each
node that calls a given task before doing the CPS transformation
of that task; we then add enough result parameters to the task to
handle the highest number of outputs. When transforming calls to
the task, we then insert a dummy result argument if there are fewer
outputs at a particular call than the task has result parameters.

4.2 OpenCL Runtime Implementation
In developing this paper we have focused on the Kite programming
model and its translation to OpenCL. However, to avoid omitting
all runtime details, the remainder of this section provides a short
synopsis of our current implementation.

OpenCL limits task scheduling of tasks to command queues
maintained on the host; once kernel code is executing on the device
no additional scheduling or load balancing can be performed. Fur-
ther, encoding a scheduler in OpenCL is complicated by the lack of
function pointers. We address these limitations with the technique
of persistent threads [1, 25] and uber-kernels (a form of defunction-
alization [24]), respectively. The remainder of this section outlines
these approaches.
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Figure 8. CPU/GPU queue memory layout

Persistent threads. While OpenCL supports fine-grained paral-
lelism, it does not support pre-emption and relies on hardware
scheduling of execution grids far larger than the actual parallelism
of the underlying device; this means that, if not carefully coded, a
software scheduler may never get to run. Note that, as this is part
of the OpenCL execution model, these observations are true for
both the CPU and GPU devices, as the CPU device is exposed as a
single aggregate device. The persistent thread model addresses this
by launching just enough work to ‘fill’ the machine, i.e. an imple-
mentation can assume the invariant that all launched threads will
execute concurrently and thus it is possible to perform global com-
munication while maintaining forward progress. OpenCL does not
directly expose support for ‘filling’ the machine and instead we cal-
culate semi-automatically the appropriate number of task-schedular
‘uber-kernel’ instances (described below) using either the Device
Fission extension, that allows a CPU device to be subdivided to
individual cores [3], or using GPU vendor tools including AMD’s
profiler and NVIDIA’s occupancy calculator.

The runtime implementation itself is based on a standard work-
stealing schedular and uses variants of the Chase-Lev algorithm [7].
The CPU implementation is a direct implementation of this algo-
rithm, maintaining a single work-queue for each core in the system
and the scheduler supports stealing from both the top and bottom
of the task graph, accounting for differences in cache configura-
tion. As described previous (§ 4.1) our Kite-to-OpenCL translation
is based on continuations and the runtime maintains runnable and
continuation queues, laid out in memory as per Figure 4.1. The
GPU implementation is complicated by a desire to increase the
amount of vector efficiency (i.e. WAVEFRONT utilization) and our
implementation extends the original Chase-Lev algorithm in two
ways: firstly we have extended it to allow a vector width’s chunk of
work to be consumed, by adding a consuming edge to the lock-free
implementation to guarantee atomic access; secondly we maintain
two versions of the queues, one in global memory and one in local
memory. The local memory queue is accessible to a single compute
device only and thus work enqueued there cannot be stolen by other
compute units. A consequence of this choice is that if this queue is
too big then load-imbalance can become an issue. To date we have
found that a size of 32 wavefront-width tasks seems to be work
well for a number of applications, however, we have found others
that behave badly with this limit and we do not currently have an
automatic way to derive a sensible value.

It should be noted that it is possible in this implementation for
work to be stolen by the device from the host and vice versa us-
ing shared, mapped memory regions to contain queues that are ac-
cessed by persistent threads on any OpenCL device. In this fash-

ion an entire heterogeneous system can load balance by moving
tasks between a set of queues spread over its constituent devices.
Optimal behaviour for this heterogeneous task stealing remains to
be analysed as future work; in particular, the trend towards high-
performance desktop Fusion architectures starting aggressively in
the next year will decrease overhead from shared queues and allow
more fine-grained task interaction than is currently practical.

Uber-kernels. Given a set of Kite tasks t1, ..., tn, compiled to
OpenCL, using the translation described in § 4.1, as tcl1, ..., tcln,
an uber-kernel encapsulating these tasks is defined by:

void runTask(
GlobalScope globalScope,
struct Task task)

{
switch (task.id) {
case t_1_ID:

tcl_0;
...
cast t_n_ID:

tcl_n;
}

}

To run a task the scheduler dequeues a task and passes it along with
some encapsulated state to the runTask, and takes the form:

Task t = popBottom(lwsdeque);
while (!isTaskEmpty(t)) {

runTask(globalScope, t);
t = popBottom(lwsdeque);

}

The persistent threading model is quite general, and work-stealing
is only one possible task queueing approach. We intend to develop
alternative approaches, such as maintaining one queue per task
type, and study their impacts when used on a GPGPU architecture.

5. OpenCL Tasklets
While we believe Kite is interesting as a programming language
in its own right, it can be difficult to get developers to adopt new
languages. To address this concern we use Kite to formulate an
extension to core OpenCL supporting light-weight tasks, called
Tasklets.

The task (or task) qualifier declares an asynchronous function
to be a future that can be executed by an OpenCL device(s).

A task returning a result, i.e. a future, is spawned with the
following syntax:

identifier <- identifier (expr_1, ..., expr_n);

For a task that does not return a value or the user does not intend
to use the return value, the following syntax is provided:

() <- identifier (expr_1, ..., expr_n);

We tried a number of approaches to avoid exposing any notion
of continuations in the OpenCL C language but again and again
came across the issue of escaping variables. At first, this might
not seem like a problem as variables local to a work-item (i.e. pri-
vate memory) can be stored in a continuation task by value, global
memory is shared by all work-items across the system and so stor-
ing references to this memory introduces no additional burden. The
problem is local memory usage, which is shared only by collec-
tion of work-items running on the same compute unit. Continuation
tasks, due to stealing, may not run on the the same compute unit,
and furthermore, local memory is shared by all tasks running on a
particular compute unit.
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We address the issue of escaping values with the following
syntactic construct:

force(var_1, ..., var_n) {
statement-list

}

where var_1, ..., var_n are variables defined within the sur-
rounding context and the only free variables in the block are de-
fined globally. A force block is assumed to always return from the
enclosing task that it is defined in. Thus the force construct is an
explicit representation of Kite’s implicit continuation-passing im-
plementation. Like Kite’s implementation, continuations are only
used when necessary and the cost of building closures is only in-
curred when used explicitly by the programmer.

The force block is closely related to use of delegate functions
in TPL, which are used to represent tasks. Delegates in TPL capture
free variables of tasks, as per our force construct, allowing paral-
lelism to be introduced in a compositional manner. We considered
not requiring force blocks to always return, but this breaks with
the generation of a compositional semantics, making the resulting
code hard to reason about.

6. Conclusion
This paper has explored an alternative programming model, based
on braided parallelism and targeting the GPGPU architecture. Ex-
isting GPGPU programming models are data-parallel, generalized
versions of OpenGL and DirectX, finding application in domains
which contain large amounts of regular flat data-parallelism. We
have motivated Kite’s development from a desire to widen the set
of potential applications for the emerging heterogeneous comput-
ing era. Using OpenCL as our target language, we have described
what we believe to be the first general purpose programming lan-
guage for braided parallelism that targets the GPGPU programming
model.

Differences in core design and latency of communication be-
tween cores both become important considerations in managing
queues. As we saw with the for and map constructs in § 3.4, there
is reason to consider how the structure of an execution maps to the
underlying hardware. When we have a system with heterogeneous
cores we must also consider where a series of sparked tasks will
be placed to make efficient use of the device, and the relative cost
of task stealing across different communication latencies. A nar-
row execution with little data parallelism might be better served by
running on the high speed scalar CPU core, while a wider dispatch
generated by a map might be a good trigger to move work over to
a throughput oriented GPU core.

Finally, many existing higher-level languages rely on garbage
collection to ensure memory safety and simplify programming
models. If GPGPU computing is to be successful in the main-
stream, then addressing complexities in existing GPGPU memory
models and providing simplified, garbage-collection-based mem-
ory models must will be increasingly important.
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