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ABSTRACT

OpenCL is becoming a popular choice for the parallel pro-
gramming of both multi-core CPUs and GPGPUs. One of
the features missing in OpenCL, yet commonly required in
irregular parallel applications, is dynamic memory alloca-
tion. In this paper, we propose KMA, a first dynamic mem-
ory allocator for OpenCL. KMA’s design is based on a thor-
ough analysis of a set of 11 algorithms, which shows that
dynamic memory allocation is a necessary commodity, typi-
cally used for implementing complex data structures (arrays,
lists, trees) that need constant restructuring at runtime.
Taking into account both the survey findings and the status-
quo of OpenCL, we design KMA as a two-layer memory
manager that makes smart use of the patterns we identified
in our application analysis: its basic functionality provides
generic malloc() and free() APIs, while the higher layer
provides support for building and efficiently managing dy-
namic data structures. Our experiments measure the perfor-
mance and usability of KMA, using both microbenchmarks
and a real-life case-study. Results show that when dynamic
allocation is mandatory, KMA is a competitive allocator.
We conclude that embedding dynamic memory allocation in
OpenCL is feasible, but it is a complex, delicate task due to
the massive parallelism of the platform and the portability
issues between different OpenCL implementations.

Categories and Subject Descriptors

D.4.2 [Operating Systems]|: Storage Management—Allo-
cation/deallocation strategies; D.1.3 [Programming Tech-
niques]: Concurrent Programming— Parallel programming;
D.3.3 [Programming Languages|: Language Constructs
and Features—dynamic storage management.
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1. INTRODUCTION

OpenCL [10] emerged in late 2008 (under the governance
of the Khronos group) as a standard for programming het-
erogeneous, massively parallel architectures. Its popular-
ity increases steadily in the high performance computing
(HPC) community, and is being viewed as an interesting
alternative to NVIDIA’s CUDA for two major reasons: its
vendor-independent specification and its promised portabil-
ity. OpenCL is competitive against models like CUDA (for
NVIDIA GPUs [8]) and OpenMP (for multi-core CPUs [17]),
and it is currently supported by a large number of promi-
nent vendors, including AMD, Apple, ARM, Intel, NVIDIA
and Qualcomm. The model continues to evolve towards a
user-friendly solution for implementing various types of ap-
plications.

The OpenCL programming model provides developers with
an application model for a heterogeneous platform. This
model includes several devices which run highly-parallel,
compute intensive kernels, and a host, which typically man-
ages the execution of the devices and kernels. A kernel is
executed by multiple work items, organised in work-groups.
All the work-items for each work-group are launched simul-
taneously by a program, and their execution is interleaved
by a fine-grained scheduler on the device. Work-groups
from a single kernel launch are unordered and are generally
streamed through the device as capacity becomes available.
Local, intra-group synchronisation is possible in OpenCL,
while global, inter-group synchronisation is explicitly not a
part of the model. Memory objects are managed by the
host, and data must be copied to and from the device(s).
This model applies particularly well for applications that
require (large) regular data structures like 2D or 3D-grids,
but could be insufficient to support irregular data structures
like linked lists or trees.

Many traditional programming platforms offer dynamic
memory allocation to support such irregular data structures.
In contrast to static allocation, a dynamic allocator en-
ables programs to determine and request memory for its
data structures at run-time. Graph analysis and in-memory
MapReduce problems are only two examples of large classes
of problems that require a parallel application to work with
such dynamic and irregular data structures. For perfor-
mance reasons, the allocation subsystem must support con-
currency and avoid memory wastage as much as possible.

The design of dynamic memory allocators has been exten-
sively studied for both sequential- and parallel systems [3,
6, 11, 12]. CUDA also includes its own dynamic memory
allocator [14]. Furthermore, there are already a couple of
alternative CUDA memory allocator designs aimimg to im-
prove the performance of the default one [19, 9]. Unfortu-



nately, none of these implementations can be ported directly
to OpenCL, mainly due to portability challenges. Thus, de-
spite memory allocators being well understood, OpenCL is
still lacking one, a limitation that becomes obvious for devel-
opers who attempt to implement irregular data structures
in their OpenCL kernels.

To overcome this limitation in OpenCL, we propose KMA,
the first dynamic memory management system for OpenCL
kernels. KMA is a generic solution that provides basic mem-
ory allocation/deallocation, but also allows for application-
specific performance optimisations. Although we apply many
of the lessons learned in prior work on low-level memory allo-
cators and higher level optimisations, we encountered many
new challenges related to the OpenCL platforms. Most no-
ticeably, the different platforms implement different inter-
pretations of OpenCL’s relaxed memory ordering guaran-
tees, limiting the portability of any proposed solution. In
addition, thread safety cannot be enforced in OpenCL by
the use of mutexes, devices in the OpenCL model do not
manage their own memory, and OpenCL only allows for lim-
ited optimisation because synchronisation of work-items can
only be guaranteed at the work-group boundaries.

For KMA, we present a design that tackles the problem
at two levels: (1) a lower level memory allocator, providing
the programmers with the full usability and flexibility of
malloc() and free() at the price of a higher performance
penalty, and (2) an optimised higher level data structure,
providing more specialised memory management functions.
The low level allocator is implemented using mostly lock-free
algorithms to achieve a good scalability without requiring
mutexes. Requests are served from pre-allocated memory.
On the high-level, we implement the prefix-sum reduction
approach proposed by Huang et. al [9] to combine memory
allocations within work-groups and show how this increases
an applications performance. We show performance figures
on NVIDIA GPUs and x86 CPUs, explain why we had to
sacrifice support for Intels’ toolchain and AMD GPUs, and
cover how the memory guarantees offered by OpenCL 2.0
could aid in improving portability.

The main contributions of our work are as follows:

(1) We propose KMA, the first dynamic memory manager
for OpenCL.

(2) We empirically identify patterns for dynamic memory us-
age in parallel applications, and show how these patterns can
be used to significantly improve the performance of KMA.
(3) We enumerate and discuss the requirements and chal-

lenges of building a system-wide memory allocator for OpenCL

kernels, and discuss memory model changes that could im-
prove KMA’s portability.

(4) We discuss the advantages and limitations of KMA for
real applications by means of a case-study, discussing both
its usability and its performance.

2. BACKGROUND AND RELATED WORK

In this section we introduce the basic concepts needed to
understand the context of this work, and survey the state-
of-the-art in massively parallel memory allocators.

A dynamic memory allocator® is a generic name given to
the system that manages a heap of memory and handles, in a

! Along this paper, we often refer to the whole memory man-
agement system by the name of “memory allocator”; a sim-
plification also found in the literature.

centralised manner, the memory allocation and deallocation
requests coming from applications. Generally, such a system
(1) keeps track of the memory blocks on it’s heap, including
the allocation state of each block, (2) handles requests to al-
locate or free memory while constantly updating the state of
the heap accordingly, and (3) communicates with the (main)
operating system to alter the size of the heap when required.
Typical measures of the performance of memory allocators
are response time (the lower, the better) and memory util-
isation (the higher, the better) [11]. The trade-off between
these performance indicators is a metric we also consider
relevant for our work.

2.1 Parallel memory allocators

There are two very popular heap management algorithms:
Doug Lea’s DLmalloc[11] as used in the GNU libc imple-
mentation, and the GPL-licensed Hoard algorithm[3]. Lea’s
allocator uses a single heap, and free blocks are placed into
size-binned linked lists. Adjacent free blocks are coalesced
forming larger blocks. Small and medium sized allocations
use a best-fit algorithm, while large ones get served directly
from the operating system. By using a large amount of size
bins there is only a very limited amount of internal frag-
mentation. Hoard’s allocator manages “superblocks” con-
taining equally sized memory blocks. Allocating and group-
ing blocks of memory of the same size alleviates the external
fragmentation (between any two allocated memory blocks),
at the cost of more internal fragmentation, as the amount
of required memory must always be rounded up to the size
class border.

Such traditional memory allocators tend to scale poorly
as cores are added to the system, due to the protective mea-
sures needed to keep the state of a centralised memory al-
locator valid, thus guaranteeing memory consistency. Lock-
ing the allocator when in use by a single thread would lead
to severe penalties in highly-concurrent systems like GPUs.
Hoard’s allocator tackles this by using two types of heaps:
a global heap and a per-process local heap. This approach
limits the amount of conflicts that require locking, maximis-
ing the concurrency, but local heaps lead to severe overpro-
visioning and low overall memory utilisation. Alternatively,
Dave Dice et al. proposed a mostly lock-free memory alloca-
tor for Solaris systems [6]. Michael Maged proposed LFMal-
loc [12], a portable lock-free memory allocator that makes
use of the Compare-And-Store instruction of many modern
processor architectures. LEMalloc scales nearly perfectly up
to 16 processors, without any significant latency overhead.

None of these designs are immediately compatible with the
OpenCL model. However, we have combined ideas found in
Maged’s and Lea’s allocators towards a scalable design: we
use a single, global heap, but use lock-free data structures
to limit the impact of concurrency on performance.

2.2 Related Work

Our work builds upon ideas first implemented in “tradi-
tional” parallel memory allocators, as discussed in great de-
tail in [18]. As the number of entities has a strong impact on
the contention that the allocator will observe, this section
focuses on related work in the sub-field of many-core mem-
ory allocators (i.e., allocators for platforms with hundreds
to thousands entities).

Traditional parallel allocators [12, 6] fall short on SIMD
or SIMT machines because concurrent allocations have to



be serialised Xiauhuang Huang et al. propose the xmalloc
allocator [9] for CUDA GPUs to work around this issue:
the memory requirements of all CUDA threads in a thread-
group are gathered by means of a prefix-sum reduction[4]
with a time complexity of O(logn), and a single memory al-
location is performed for all threads combined; the allocated
memory is then distributed among the requesting threads.
Their results show a great improvement in latency and ex-
cellent scaling with the number of cores in the GPU. We
have generalised this solution as a family of optimisations
for the high-level functions of KMA (see Section 4).

A different attempt to implement a kernel memory alloca-
tor for CUDA is presented by Steinberger et. al [19]. Based
on Hoard’s allocator, and using a local heap for each work-
group, ScatterAlloc is shown to achieve good response time,
scalability, and memory utilisation, outperforming both the
built-in CUDA function and Xmalloc. ScatterAlloc uses a
bit field to identify used chunks within a superblock, a tech-
nique that we adopt for our lock-free low-level allocator. As
ScatterAlloc focuses only on NVIDIA’s CUDA-compatible
devices, it is unclear to us whether the proposed techniques
can be preserved in a fully functional and portable imple-
mentation for OpenCL.

Another interesting attempt to address the performance
of memory allocation in SIMD-like kernels is FDMalloc, pre-
sented by Widmer et al. [22]. The authors present a solution
for reducing the number of calls actually made to the allo-
cator through a voting mechanism. However, their solution
requires a memory allocator to be available on the target
platform (CUDA, in this case), bases its optimisations on
existing patterns in the allocation requests, and does not al-
low threads to free their own allocations, providing a garbage
collection instead. Compared to FDMalloc, KMA also pro-
vides a low level memory manager, and allows more flex-
ibility in implementing and using the high level functions.
Moreover, when OpenCL will support the required voting
mechanisms [22], FDMalloc can be implemented as a high-
level allocator in the KMA model.

3. REQUIREMENTS

To derive realistic requirements for dynamic memory al-
location, as well as the patterns followed when using it in
parallel applications, we evaluated a significant set of appli-
cations. This section outlines the findings of this survey and
the derived requirements for KMA.

In our survey, we analysed representative applications from
Asanovic’s classification [2], looking for cases (if any!) when
dynamic memory allocation is used to improve code . Note
that we did not consider C++ as a use-case in our study:
while memory allocation is mandatory for any object ori-
ented kernel language, the current proposal [16] does not
include such features.

The list of analysed applications is prese nted in Table 1.
Out of the twelve classes from [2], we found suitable parallel
implementations for eight in the Rodinia [5] and Parboil [1]
benchmarks; for dynamic programming, we chose a custom
graph traversal [7] as a reasonable approximation.

Our analysis focused on (1) allocations and deallocations
that occur more often than just at the beginning and end of

2Code improvement is traditionally subjective and difficult
to define. In this context, we mean code easier to read-
/write/maintain.

Class Application Source
1 Finite State Level-7 Paper
Machine filtering Hellas University([21]

Implement  Use malloc
List of states

Combinatorial -
Graph analysis

2
3 Graph Traversal TU Delft code [15] OpenCL List of nodes
4 Structured Grid Heart Wall Rodinia code OpenMP  none
5 Dense Linear Algebra K-Means Rodinia code OpenMP none
6  Sparse Matrix SPMV Parboil code Cuda none
7 Spectral (FFT) FFT Parboil code Cuda none
8 Dynamic Programming Dijkstra Theory none
9 N-Body and Barnes-Hut Texas State U.* OpenCL Octree
Particle Methods Code
10 MapReduce -
11 Backtracking -
12 Unstructured Grid Back Propagation Rodinia code OpenMP  none

Table 1: Selected programs for use-case study and a brief
overview of our findings.

a kernel execution, and (2) cases when pre-allocated buffers
are insufficient due to some type of data-dependent behaviour.
Thus, where source code was available in any parallel form,
for CPUs or GPUs, we investigated the use of temporary
data structures. When no source code was available, we fo-
cused on possible implementations of the algorithms. We
even used the theoretical approach of Dynamic Program-
ming to draw conclusions about the added value of having a
heap allocator for such problems. For the classes of applica-
tions where no reasonably sized parallel sample application
could be found (see 2, 10, 11 in Table 1), we leave a more de-
tailed analysis for future work: existing applications already
provide sufficient challenges for KMA has to address.

To filter out the cases when memory allocation is not ben-
eficial, we make the following observations. First, we should
focus on temporary data structures because they are equiv-
alent with kernel local data, and thus potential targets for
kernel memory allocation. Second, variables that are only
locally accessed should use local memory instead of dynam-
ically allocated global memory; the large data structures
with shared access are the challenging cases. Finally, vari-
ables whose malloc () and free() object counts are constant
or directly connected to the problem size have known mem-
ory requirements, making host-based static allocation more
efficient. Due to these observations, classes 4, 5, 6, 7, 8, and
11 from Table 1 are uninteresting for our KMA design [18].

The remaining classes of applications - Finite State Ma-
chine, Barnes-Hut, and MapReduce - have similar patterns
in using memory allocation. In the case of non-deterministic
finite state machines, a global list of possible future states is
needed, dimensioned at run-time and heavily dependent on
the input data. Similarly, in a graph traversal such as BF'S,
the nodes that are just being visited - the so-called BFS
frontier [15] - are stored in a list of unknown size. At run-
time, and depending on the starting node and on the graph
structure, this list needs to be dynamically adjusted. Us-
ing a dynamic list can save a lot of communication with the
host. Finally, in the Barnes-Hut algorithm, a dynamically
sized octree of nodes is built after each iteration. Writing
a Barnes-Hut implementation without overprovisioning and
complicated index computations can be achieved if new oc-
tree nodes can be allocated from a global kernel heap. This
could effectively eliminate a round-trip to the host system
required to build this octree.

Our survey showed cases when kernel memory allocation is
necessary: either for ease of programming and fast prototyp-
ing, or to address data-dependent behaviour. Furthermore,
in many cases, users tend to use the basic allocate/deal-

3http://www.gpucomputing.net/?q=node/1314
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locate functionality to build customised high-level dynamic
data structures that can be altered (in shape and/or size)
at runtime. Combined, these observations lead to two im-
portant requirements for KMA: (1) for flexibility, it has to
provide a generic memory manager, with generic malloc()
and free () functions, and (2) for performance and usability,
it should provide support and optimisations for high-level dy-
namic data-structures and functions for their management.

4. DESIGN AND IMPLEMENTATION

In this section we discuss OpenCL’s challenges and our
solutions for KMA'’s design.

4.1 OpenCL challenges for memory allocation

We identify four challenges: (1) contention for synchro-
nisation primitives in a high throughput, heavily threaded
platform model, (2) a weak memory model with few order-
ing guarantees, (3) the mapping of OpenCL C’s SPMD code
lane-wise onto a SIMD execution unit, and (4) the lack of
global synchronisation.

Contention for locks causes serialisation of parallel threads.
Lock-free data structures are traditional solutions to avoid
such contention, but they are extremely challenging to im-
plement. In OpenCL, implementing lock-free data struc-
tures and even locks themselves is further complicated by
the presence of a very weak memory model. Strictly under
the OpenCL 1.2 specification, memory visibility is only guar-
anteed by atomic operations (which are themselves weakly
ordered), by kernel boundaries and (to other work-items
within a work-group only) by barrier synchronisation prim-
itives. The effect of this weakness is that is it challenging
to guarantee that data structures beyond simple atomically
changed values are correctly updated in the parallel set-
ting. Specifically, some of the choices made for the OpenCL
implementations become vendor-specific, effectively result-
ing in different memory consistency models implemented by
NVIDIA, Intel, and AMD SDKs*.

Next, the specific mapping of SPMD code to SIMD units
is a choice for the vendor implementation. For example, it is
correct behaviour for a developer to write code where some
work-items branch around allocation calls, and assume some
allocations are masked out in the overall execution. How-
ever, to support portable, per-work-item memory allocation
with this functionality, different solutions - some that are
not portable, others that are simply inefficient - are manda-
tory for different types of device - e.g., GPUs and CPUs.
Finally, OpenCL only defines global synchronisation and
memory visibility at the boundaries of parallel kernels (or
kernel-like entities, like copy operations). Thus, “officially”,
global synchronisation is not possible inside kernels. Global
barriers based on spinning until a value changes are feasible
for GPUs [23], but rely on assumptions about the underlying
memory model and hence are not portable.

4.2 KMA: A two-layer memory allocator

We designed our allocator to address two main objectives:
support generic, fully-flexible memory allocation and pro-
vide ready-to-use management of dynamic data structures
(see Section 3). Thus, KMA has two layers: a low-level tra-
ditional memory allocator and a high-level, customized layer

4These are the SDKs we have used in this work.

that uses the generic allocator with increased programma-
bility and performance optimisations.

The low-level memory allocator

The goal of the low level memory allocator is twofold: to
provide a simple abstraction layer on top of the memory ca-
pabilities offered by the OpenCL platform and to provide
the programmer with a familiar interface. Thus, our ba-
sic solution provides the kernels with a large heap and the
traditional malloc() and free() POSIX C API calls. The
heap will be hosted in global memory, will be accessible to
all threads, and it is intended for large, device-based data
structures °.

KMA implements a heap using a regular OpenCL read-
write buffer, associated with a given device and a given com-
mand queue. A heap is instantiated on the host side (using
CISBMalloc_create()S); its size is set by the user specifying
the number of desired superblocks and the superblock size.
We note here a first important OpenCL restriction: this
heap cannot be resized at the runtime request of a kernel,
because the device cannot asynchronously communicate this
request to the host. Therefore, the heap is statically sized,
which typically requires some degree of memory overprovi-
sioning. Limiting memory wastage in this scenario is entirely
application-specific.

Once instantiated, the heap is initialised on the device
itself, by means of a special kernel that builds the neces-
sary data structures and initial state. Note that, due to this
device-based procedure, KMA adds no data transfers be-
tween the host and the device. After initialisation, a heap (a
simple c1l_mem object) can be passed as an argument to any
subsequent kernel call that wants to use it. The programmer
is then free to call malloc (heap, size) and free(heap) in-
side kernels that use a heap ".

High-level custom data structures

One of the common uses of malloc() and free() is im-
plementing and managing custom dynamic data structures.
Some of these structures have specific usage patterns, where
arbitrary interleaving of malloc() and free() does not oc-
cur. For instance, a list that can grow arbitrarily, but indi-
vidual objects are never removed (for example, in a graph
traversal algorithm) is using multiple allocations, but a sin-
gle deallocation. The knowledge of such usage patterns al-
lows us to provide KMA with two important features: (1) a
skeleton for designing and implementing custom data struc-
tures, which improves programmability, and (2) pattern-
driven optimisations (e.g., such as that presented in [9]),
thus improving the performance of the basic, low-level allo-
cator.

Implementation: Memory allocator

Blocks and superblocks - The structure of a heap ob-
ject (see Figure 1) consists of a a state header followed by a
number of “superblocks” given by the user at initialisation.
Superblocks are further split up in allocatable space - i.e.,

®Data structures allocated on the device cannot be directly
transferred to the host because the pointers belong to dif-
ferent memory spaces

5The complete description of the API is available in [18].
"In principle, multiple heaps can be used inside the same
kernel, although this clearly defeats the purpose of using a
global heap to solve overprovisioning
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Figure 1: The structure of KMA.

Heap SuperBlock SuperBlock

°bytes int _|—>°next queue_item next queue_item
°free clqueue oblock_size int °block_size int

°sb[] superblock ocredit int2 °ocredit int2
°datal] cdatal]
°free bitmap °free bitmap

SuperBlock
|°next R
SuperBlock
onext queue_item v
°block_size int
°credit int2 —
cdatal]
°free bitmap

Figure 2: The design of KMA

blocks of different sizes, to be used by malloc()- and ad-
ministration space, used to keep each block’s state (e.g., if
allocated or free) [6, 11, 9].

The administration of superblocks is described in Figure 2.
Superblocks can be either active, inactive or free. Free su-
perblocks are linked together in a “free”-list, but they cannot
be coalesced. Thus, the size of an allocated block cannot be
larger than the size of a superblock. Depending on the ap-
plication, programmers are recommended to carefully tune
this parameter, thus tuning memory utilisation (i.e., limiting
memory wastage).

The possible sizes of blocks inside a superblock are approx-
imated by {2" | 2 < n < log(superblock_size)}. Several
heuristics are used to determine the actual block size [18],
minimising the amount of space wasted on almost-fitting
large blocks. A bitmap at the end of each superblock in-
dicates the state (occupied or not) or each block. When a
new superblock is required (e.g., because the current allo-
cation request does not fit), one is taken from the free-list,
prepared and connected to the superblock list in the heap
state. Now the superblock is active. As soon as all its blocks
are allocated, a superblock is disconnected from this list and
becomes inactive. Freeing all the blocks inside a superblock
causes it to be added to the free-list, to be reused later on.

Algorithms - Our goal is to use lock-free data struc-
tures and algorithms, to allow multiple memory operations
in parallel (and avoiding the quirks of OpenCL synchronisa-
tion mechanisms). The algorithm used for allocating a block
of memory has three steps:

(1) Find a superblock with the desired block-size, by check-
ing whether there is an active superblock attached to the
right entry in the superblock hashmap (sb in Figure 1). If
found, no further action should be taken. Otherwise, the
hashmap entry is marked to signal that one thread is prepar-
ing a superblock. A superblock is then taken from the free-
list, its data structures are initialised, and the hashmap en-
try is updated with a pointer to this superblock.

(2) Reserve a slot inside this superblock, a simple atomic op-
eration on the state of the superblock. This state contains
the total number of blocks, and the number of free blocks
inside the superblock. After decrementing the number of
blocks and updating this value using Compare-and-Swap, a

Arraylist

+clArraylist 1nit(l:clArraylist _ global *,
size:size_t,heap:struct clheap _ global *,
reduce;uintptr_t _ global #): woid
+clArraylist_get(liclArraylist _global *,
index:uint): ulntptr_t
+clarraylist clear(l:clarrayList _ glebal *): void
+clarraylist grow(l:clarraylist _ global *,
items:size t): uintptr_t
[+clArraylist grow_local (L:clArraylist _ global *,
items:uint): uintptr_t

Figure 3: The design of ArrayList.

block is reserved.

(3) Find a free block in the superblock and mark it taken.
This is accomplished by iterating over the blocks bitmap of
the superblock. When the first free block is identified, it is
updated using an atomic OR operation. If this operation
succeeds, the block is allocated. If not, the thread continues
its search until the allocation succeeds.

Freeing a block is done by an opposite process: first the
state variable is incremented to indicate there is one free
slot. The specific block is then freed by an atomic AND on
the bitmap. If the superblock turns out to be completely
free it is then returned to the free queue.

Free list - Generic linked lists are the most obvious choice
to implement the free-list, but available generic algorithms,
like the one proposed by H. Sundell et al.[20], do not meet
the demands for our memory allocator. For example, lock-
free linked lists can be corrupted when the cursor of an work-
item iterating the list points to an element that is removed,
and solutions proposed so far degrade performance by plac-
ing these cursors in global memory or do not suffice because
they postpone deletion of nodes in the list.

By making superblocks all of equal size, there is no need
for a data structure whose elements can be iterated over.
Now the free-list can be a implemented as a queue or stack.
The lock-free queue algorithm we use is described by M.
Maged et al.[13]. Although this algorithm does not allow the
queue to run empty, and therefore wastes one superblock of
memory, it is one of the simplest and most practical lock-free
queue algorithms found in literature.

4.2.1 High-level data structure: ArrayList

ArrayList is a prototype of a top layer data structure and
its management functions, inspired by Java’s ArrayList.

ArrayList uses the low-level allocator and its APIs as
a back-end, while the user interfaces exclusively with Ar-
rayList functions (Figure 3). Once the ArrayList “object” is
created, users can add elements to the ArrayList by growing
it per work-item (grow()), per work-group (grow_local()),
can get access to the nth element (get()), and can clear
the list (clear()). The safety of the clearing operation has
to be ensured by the way users programs the application:
because we lack global synchronisation, there is no way we
can guarantee that no OpenCL threads will be accessing the
list, in which case list clearing results in memory corruption
and/or null-pointer exceptions; the application might have
this knowledge and use it to preserve thread-safety.

The Arraylist data is structured as a list of blocks, each
annotated with the number of elements inside, and linked
together by a queue. The grow() function is a simple al-
location and insertion of a new element in the list. The
grow_local() function provides optimised allocation: it is
assumed this is called by the whole group of threads. These
symmetrical calls are then replaced by a single call, made
by a single thread knowing the total amount of required



memory.

In this prototype, we use XMallocs approach [9], but other
schemes can be envisioned. These can be easily embedded
in the provided skeleton of ArrayList. Moreover, additional
optimisations can be performed on the gather/scatter of the
requested memory allocations, to insure more favourable
memory access patterns.

S. EXPERIMENTS AND RESULTS

In this section we present several performance figures for
KMA. Our goal here is to quantify three aspects of the allo-
cator: portability, performance impact, and scalability. To
do so, we designed two types of experiments: microbench-
marking experiments, to measure the allocator in isolation,
and a “live” experiment, designed to quantify the impact of
KMA on a real application.

For the evaluation of KMA, a variety of OpenCL devices
were used. The test systems and configurations that cor-
rectly executed all experiments are listed in Table 2.

5.1 Evaluating the low-level allocator

To understand the performance impact and scalability
of the low-level memory allocator, we constructed two mi-
crobenchmarks: one that measures the latency of malloc()
and free() for a single thread, and one that measures the
scalability by reporting the latency of the routines when ex-
ecuted in a multi-threaded environment. We report kernel
execution times, averaged over 10 runs.

For latency estimation, we measure the execution time of
a microbenchmarking kernel (run by a single thread) that
allocates and frees a 4-byte block of memory multiple times.
The results show a linear correlation between the number of
iterations and the total execution time, showing a constant
latency of the operations. It is also visible that the results
heavily depend on the platform family and generation.

For 10000 iterations on the NVIDIA GeForce GT640, the
latency of a single malloc() and free() is approximately
9.8us. Compared to a measured latency of 17.7us when
using CUDA’s malloc() routine on the same GPU, KMA
is almost twice as fast. In this single-threaded benchmark
CPUs are much faster (than GPUs), averaging 0.6us per
allocation on the AMD FX-6300 and showing even lower
latencies for the tested Intel CPUs.

To measure scalability, we use the same microbenchmark
running on many threads. The results are shown in Figure
5 for the nVidia GT640 and the AMD FX-6300.In this case,
each thread called malloc() and free() 100 times, with
varying amounts of block sizes.

With 4608 threads and more than 45 times as many allo-
cations as in the first experiment, the test program executes
in 0.20 seconds on the NVIDIA GeForce GT640. This trans-
lates to serving 22.5x the number of requests per seconds.

Device Type Cores | Software
NVIDIA GeForce GT640 GPU 384 CUDA 5.0.35
NVIDIA GeForce GTX480 | GPU 448 CUDA 5.0.35

NVIDIA GeForce GTX680 | GPU 1536 | CUDA 5.0.35

NVIDIA Tesla C2050 GPU 448 CUDA 5.0.35
NVIDIA Tesla K20m GPU 2496 | CUDA 5.0.35
AMD FX-6300 CPU 6 AMD APP 2.8
Intel Xeon E5-2620 CPU 6(12) | AMD APP 2.7
Intel Xeon E5620 CPU 8(16) | AMD APP 2.7
Intel Xeon X5650 CPU 6(12) | AMD APP 2.7

Table 2: Hardware platforms used for experiments.
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Figure 4: Execution time for one thread.
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Figure 5: Execution time for multiple threads running 100
allocations per thread. Variance refers to allocation sizes:
no var = no difference, low var = small differences, and high
var = large differences.

The big difference in time per allocation between this exper-
iment and the previous shows parallelism is exploited quite
well with the lock-free algorithm. When there is more vari-
ance in the allocated block size, a greater level of parallelism
is achieved, leading to even better performance. Again the
trend is roughly linear, growing as the amount of work grows.
Our implementation also shows a significant advantage over
CUDA'’s heap allocator, being 2.4 to 5.4 faster.

Finally, we note that note that CPUs show a similar be-
haviour: fairly linear scalability. However, the execution
time is much larger, due to the lower utilzation of SIMD
hardware in the underlying OpenCL CPU toolchain, and
the different design goals for the devices (single threaded
throughput versus high memory bandwidth utilisation). For
the high variance experiments, CPUs perform worse simply
because there is more work that needs to be done, while
available parallelism has already been fully exploited.

5.2 [Evaluating the ArrayList prototype

To ideally evaluate the performance of ArrayList, an ex-
periment similar to that in Section 5.1 should be conducted.
Unfortunately, there is no portable way of ahieving global
synchronisation without exiting the kernel (see Section 4.1),
and thus no way to decide when all elements should be freed
while maintaining a predictable state of the global data
structure. Using global synchronisation by cutting up the
kernel, the run-time will be dominated by the cost of such
synchronisation, and will not show the performance of the
routine itself.



Thus, we focused on the performance of allocation, and
we set up a simple test case where each work item allocates
either 4 or 8 bytes of memory 10 times in a row. In the
malloc() case, every thread allocates its own memory. In
the ArrayList case, a local prefix-sum reduction is used to
reduce the number of calls to malloc() to once per work-
group per iteration. The memory is not freed, so the two
programs have the same end result. The results of this ex-
periment are shown in Figure 6.
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Figure 6: Comparing ArrayList to Malloc

The results show a clear benefit when using the ArrayList
implementation. For small numbers of work-items, the ex-
ecution time is negligible. As the number of work-items
increases, the performance benefit is significant. For 8192
work-items, we observe an outlier, likely caused by a non-
ideal work-group size for the previous test cases, chosen to
be multiples of 384. For 16384 threads on a GPU, the Ar-
rayList test case executes 7 times faster than the malloc()
test case. Improved speed is also visible for the CPUs.

Although the usability of the ArrayList depends greatly
on the use case, this experiment shows that the “two-layered”
KMA is not only a useful to improve programmability, but
it can also facilitate optimisations for accessing custom data
structures, when the use case permits.

5.3 Use case: edge list to graph

To show the use for KMA we implemented a small use
case: a program that converts an unsorted list of arbitrary
edges into a directed graph (e.g., as part of a graph-colouring-
or a shortest-path algorithm). Given the unsorted list of
edges, for which node ids and number of links per node are
not known in advance, using statically allocated data struc-
tures such as arrays or hashmaps is challenging: their size
is unknown, making significant overprovisioning mandatory.
By using a memory allocator instead, we can allocate and
free nodes as we go, thus minimising the memory overhead
and keeping the code easy to read.

Our binary-tree is built from node and edge objects. A
node object has a key, left and right pointers, and a linked-
list to store the edges of the graph. An edge is an object
containing a pointer to the next object in the list, and a
pointer to the destination node. The node and edge objects
are created by using the low-level KMA malloc() routine,
after which they are added to the tree. If one attempts to
add a node that was previously added, the error is detected
and the node is freed again. The code snippets for the im-
plementation of these functions is presented in Listings 1, 2
and 3. Each one of them illustrates a way to use malloc()

and/or free() in such a program.

1 || bool clTree_add(*tree, *node) {

2 uintptr_t *cur = &(tree->root);

3 clTree_node *cn;

4 node->left = node->right = NULL;

5 while(1) {

6 cn = atom_cmpxchg(cur, NULL, node) ;

7 if(cn == NULL) return true;

8 if (cn—>key == node->key) return false;
9
10 if (node—>key < cn->key) cur = &cn->left;
11 else cur = &cn->right;
12 }
13 ||}

Listing 1: Adding a node to the tree.

Listing 1 shows the c1Tree_add() routine for adding an
allocated node to the tree. It takes a pointer to the topmost
element of the tree, the root, as a parameter and assigns
this as its current position in line 2. The routine attempts
to add the node at the current position by means of the
compare and exchange operation on line 6, where it tries
to replace an empty pointer with a pointer to the newly
created node. Failure of this CAS-operation indicates the
memory location pointed to by the current pointer was taken
by another node. When this occurs the routine traverses
one level deeper as shown on line 10 and 11, after which the
CAS-operation is retried on this new location. This process
repeats until either adding the node was successful or the
routine encounters a node with the same key as the node it
is trying to add.

graph_node *ensure(*heap, *tree, int key) {
graph_node *node = NULL;
while(node == NULL) {
node = clTree_get(tree, key);
if(!'node) {
node = malloc(heap,sizeof (graph_node)) ;
if (!node)
continue; /* or fail */
node->tree.key = key;
s11_init(&node->1links) ;
if (!'clTree_add(tree, &mode->tree)) {
free(heap, node);
node = NULL;

}
}

return node;
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Listing 2: Searching a node in the tree: if not found, add.
Note the use of malloc() and free() for node allocation
and deallocation.

The routine in Listing 2 will ensure that a node with a
given key exists. It first issues a search for a node with the
requested key using the clTree_get() function on line 4.
This function is a regular tree search for which we omit the
details for brevity. When the search returns no match, the
routine allocates a new node from the heap on line 6 using
malloc() and initialises this node. On line 11 it then tries
to attach this node to the tree by calling c1Tree_add(). If



this returns true the node was successfully attached and it is
returned, otherwise the node is freed again after which the
routine will retry. On the second try, clTree_get () shall
return a valid match unless the node was removed in the
meanwhile.

source = ensure(heap, tree, edge->source);
sink = ensure(heap, tree, edge->sink);
link = malloc(heap, sizeof(graph_link));
link->sink = sink;

s11_add(&source->links, &link->q);
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Listing 3: Using malloc to allocate a link

Listing 3 shows the code used to add a single edge to the
tree. In the first two lines it calls the ensure() routine to
ensure the source and sink nodes attached to this edge exist.
Then it allocates a link object using malloc (), initialises the
pointer and uses a singly-linked-list operation to attach this
link to the source node.

This example code gives a brief demonstration of how
KMA'’s kernel interface differs little from the C counterpart.
The overhead on the host-side application code is minimal: a
new heap is created by calling c1SBMalloc_create(). This
routine will allocate the heap and launch a kernel to ini-
tialise it on the device, after which the heap ready for use
by any kernel that receives the pointer to it as a parameter.

To test the performance of this tree algorithm implemen-
tation, we used a dataset containing 64K edges and about
10K nodes. Both on the CPU and GPU this test case was
executed with a varying number of work-items. To show the
performance impact of KMA, we compared its performance
to a “poormans”-malloc: a ringbuffer-like structure with a
head-pointer. It has no free routine, and the malloc() rou-
tine is a simple atomic addition on the head pointer. This
implementation has very low complexity, at the cost of not
being a generic solution: free memory cannot be re-used.
The poormans-heap test code is also slightly less naive than
the KMA code; to control the amount of wasted memory it
holds on to an allocated object for a possible next iteration
where in the KMA codepath this block would be freed and
re-allocated on the next iteration.

On the NVIDIA GPU, the static set-up time for the data
structures needed for KMA to use a heap with 512 su-
perblocks of 4KB each is 1.5ms. For the poormans-heap
the total set-up time is 0.2ms. The difference of 1.3ms is
spent on the single threaded initialisation kernel that en-
queues all the superblocks to the free-list. The CPU shows
similar numbers: 1.15ms with KMA versus 0.1ms for the
“poormans”-heap.

Figure 7 presents the execution time of our test case rela-
tive to the number of work-items. The first thing to observe
is that for more than 400 work-items, the performance does
not increase any further on GPUs. Overall, the full applica-
tion executes in approximately 28.6ms, where the implemen-
tation using the poormans-heap finishes in 12.6ms. With
the naive usage of KMA, the total overhead is 56% of the
execution time. We did observe a performance-peak at 1536
threads, that can be explained by the more ideal mapping of
work-groups on the physical GPU. On the AMD CPU per-
formance does not change with the number of work-items,
which is not surprising given its six cores. We obtain 37.9ms
and 20.7ms for KMA vs. non-KMA, respectively, meaning
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Figure 7: clTree performance: KMA vs. poormans heap.

that KMA adds a performance overhead of approximately
45%.

From these results, we conclude that there might be a big
price to pay for the full functionality of a memory allocator.
In some cases, this application-level penalty might become
significant. However, our example has only measured the
time spent on constructing the data structure, and not its
use. For realistic cases, when complete applications combine
data structure construction and usage, the relative overhead
for using KMA will be proportionally smaller.

6. TO MALLOC OR NOT TO MALLOC?

This section discusses the strengths and weaknesses of
KMA, and summarises the additional support needed to
build a better KMA-2.

6.1 KMA: pros and cons

KMA is built to enhance OpenCL with a dynamic memory
allocator for global memory by improving its programma-
bility for irregular algorithms and data structures. Ideally,
KMA should completely hide the complexity of explicit dy-
namic memory management behind the familiar malloc ()
and free() calls, or by using the customised higher-level
APIs. However, in practice, a few issues need to be ad-
dressed before this statement becomes 100% true.

The most severe problems we encountered are related to
portability on different OpenCL implementations:

e For Intel’s SDK, the problem we encountered was re-
lated to the lack of flexibility in interpreting pointers
as integers and vice-versa, which is required for arith-
metic manipulation of the pointer.

e AMD’s OpenCL implementation prevented us from
running the memory allocator on their GPUs because
the compiler offers too weak a memory ordering guar-
antee, though not an incorrect one. OpenCL 1.2 only
requires that memory access reordering does not break
the semantics of a single work-item, and that memory
fences can be used to guarantee partial ordering be-
tween different work-items in a work-group. Global
lock-free algorithms, like the ones used for our mem-
ory allocator, require stronger memory ordering guar-
antees to hold between different work-groups.

e NVIDIA’s OpenCL implementation offers stronger mem-
ory ordering guarantees than required by the OpenCL
1.2 standard, translating a work-group wide memory



fence on global memory to a device-wide memory fence.
This property allowed us to write a memory alloca-
tor that works correctly on NVIDIA GPUs. The same
code works on AMD APP (AMD’s OpenCL for CPUs)
mainly because x86 CPUs utilise very little memory re-
ordering techniques in the first place. On AMD GPUs
there currently is no way to insert such device-wide
memory fences.

On a different note, KMA focuses on global memory al-
location only. We made this choice because we considered
dynamic allocation is much more likely to be used on large,
shared data objects rather than on cache-sized, work-group
local objects. Furthermore, while local memory is typically
improving the performance of GPGPU applications, other
devices (especially CPUs, where local memory is not a ded-
icated memory space) suffer penalties when using it. There-
fore, attempting to improve allocation by using local mem-
ory is a very complex endeavor, with unclear benefits, that
we chose not to pursue.

In terms of performance, KMA does add a certain over-
head by construction: dynamic allocation will always be
slower than static allocation, as no memory manager has
zero-latency. Thus, using KMA is a design decision any de-
veloper needs to take considering the trade off between the
high-level KMA functionality, leading to higher productivity
and maintainability, and its impact on performance.

6.2 Considerations for “KMA-2”

A lot of the design decisions taken for KMA are enforced
by the platform limitations discussed in Section 4. Several
directions can be be explored for a better KMA-2.

For performance, the main priority is to limit the mem-
ory wastage of KMA. For example, bigger blocks could be
allocated when free blocks can be coalesced, which in turn
requires an algorithm based on a lock-free ordered linked-list
instead of one using a queue for the superblocks; however,
it will also require a more complex KMA-2 backend. Al-
ternatively, one can replace any lock-free algorithms with
an efficient variant using mutex-style locks in OpenCL pro-
vided a feasible and well-performing implementation of these
locks becomes possible.

For portability, we found that the memory model of OpenCL
1.2 is too relaxed to implement a portable lock-free algo-
rithm. The newest OpenCL 2.0 specification offers a stronger,
more controllable, memory model based on the C11 model
and should support an implemention of our portable mem-
ory allocator without relying on undocumented behaviour of
vendor implementations. When vendors implement OpenCL
2.0, we believe KMA-2 can be made fully portable across dif-
ferent families of platforms.

Of course, many new features, like supporting bigger block
sizes for allocation, adding more high-level data structures,
or using local memory to further improve performance can
always be assessed, evaluated, and potentially implemented.
However, we believe our KMA prototype provides the user
with a sufficiently good base for prototyping and testing;
new features will then naturally follow from users feedback.

7. CONCLUSIONS AND FUTURE WORK

In the context of massively parallel architectures - accel-
erators or not - dynamic memory allocation remains a diffi-
cult problem. Nevertheless, in search of better performance,

many algorithms that involve irregular data structures are
ported to OpenCL, and demand significant efforts to over-
come OpenCL’s restrictive, static-only memory allocation.

In this work, we provide an alternative to this situation:
KMA, a first dynamic memory manager for OpenCL. KMA
is based on a two-layer design: the lower-layer provides the
familiar and flexible malloc() and free() routines, while
the higher-level provides support for custom dynamic data
structures and their management. An example of such a
data structure (the ArrayList) is presented as a skeleton for
future developments.

Our experiments show that KMA is fully functional and
portable across several OpenCL platforms. The performance
penalty for KMA is lower than that of CUDA’smalloc () due
to its simple and lock-free design, and it eventually scales
linearly with the amount of work when parallelism is fully
utilised. As the results reported by related studies [9, 19,
22] are comparable to those KMA achieved, we consider the
performance of this first OpenCL dynamic memory manager
very promising. Moreover, the ease-of use and demonstrated
performance of the ArrayList prototype further proves our
two-layer design is feasible. Overall, KMA is a useful tool
for any developer that wishes to experiment with irregular
data structures in OpenCL kernels.

Areas where KMA will improve are (1) reducing the mem-
ory fragmentation and overhead, (2) improving portability
and (3) extending functionality. The first requires research
towards more advanced algorithms for lock-free linked-list
structures, or possibly the addition of mutex-style locks in
the OpenCL standard. Portability problems are mainly
caused by the very relaxed memory model prescribed by the
OpenCL standard; more restrictive memory guarantees as
described in the OpenCL 2.0 specification would solve this
second issue. Research towards functionality should follow
from user demands, but might include the allocation of big-
ger blocks than our current limit.
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