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GPU EXECUTION AS WAS 

We often view GPU programming as a set of independent threads, more reasonably known as “work 
items” in OpenCL: 

kernel void blah(global float *input, global float *output) { 

  output[get_global_id(0)] = input[get_global_id(0)]; 

} 

 

Which we flatten to an intermediate language known as AMD IL:  

 

Note that AMD IL contains short vector instructions 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 

–  Each half of the device has a wave scheduler 

 This can be seen as a shared, massively threaded, scalar core 

 

The device as a whole can run up to about 500 threads 

– 500 program counters across the two schedulers 

– The device can execute around 32000 work items concurrently 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
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IT WAS NEVER QUITE THAT SIMPLE 

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines 

– Data-parallel through hardware vectorization 

– Instruction parallel through both multiple cores and VLIW units 

The HD6970 issued a 4-way VLIW instruction per work item 

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane 

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 

Clause body 
Units of work dispatched 

by the shared scalar unit 

Clause header 
Work executed by the 

shared scalar unit 

VLIW instruction packet 
Compiler-generated instruction level 

parallelism for the VLIW unit. 

Each instruction (x, y, z, w) executed 

across the vector. 

Notice the poor occupancy of VLIW slots 
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WHY DID WE SEE INEFFICIENCY? 

The architecture was well suited to graphics workloads: 

– VLIW was easily filled by the vector-heavy graphics kernels 

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient 

 

Unfortunately, workloads change with time. 

 

So how did we change the architecture to improve the situation? 
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AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

Full read/write L1 data caches 

 

SIMD cores grouped in fours 

– Scalar data and instruction cache per cluster 

– L1, LDS and scalar processor per core 

 

Up to 32 cores / compute units 
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THE SIMD CORE 

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed 

globally 
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THE SIMD CORE 

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size 

Then let us consider the VLIW ALUs 
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THE SIMD CORE 

Remember we could view the architecture two ways: 

– An array of VLIW units 

– A VLIW cluster of vector units 
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THE SIMD CORE 

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the 

compiler 

No VLIW! 

 

 

 

 

 

 

 

The heart of Graphics Core Next: 

– A scalar processor with four 16-wide vector units 

– Each lane of the vector, and hence each IL work item, is now scalar 
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The scalar core manages a large number of threads 

– Each thread requires its set of vector registers 

– Significant register state for both scalar and vector storage 

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the 

HD7970 

THE SIMD CORE 
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VECTOR UNITS 

LANE 0 LANE 1 LANE 2 LANE 15 

SIMD 

 

 64 Single Precision multiply-add 

 1 VLIW Instruction × 4 ALU ops  dependency limited 

 Compiler manages register port conflicts 

 Specialized, complex compiler scheduling  

 Difficult assembly creation, analysis, and debug 

 Complicated tool chain support 

 Careful optimization required for peak performance 

VLIW4 SIMD 

LANE LANE LANE LANE 

SIMD 0 SIMD 1 SIMD 2 SIMD 3 

 0    1    2            15  0    1    2            15  0    1    2            15  0    1    2            15 

 

 64 Single Precision multiply-add 

 4 SIMDs × 1 ALU op  occupancy limited 

 No register port conflicts 

 Standardized compiler scheduling & optimizations  

 Simplified assembly creation, analysis, and debug 

 Simplified tool chain development and support 

 Stable and predictable performance 

GCN Quad SIMD 
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s_buffer_load_dword  s0, s[4:7], 0x04 

s_buffer_load_dword  s1, s[4:7], 0x18 

s_buffer_load_dword  s4, s[8:11], 0x00 

s_waitcnt     lgkmcnt(0) 

s_mul_i32     s0, s12, s0 

s_add_i32     s0, s0, s1 

v_add_i32     v0, vcc, s0, v0 

v_lshlrev_b32  v0, 2, v0 

v_add_i32     v1, vcc, s4, v0 

s_load_dwordx4  s[4:7], s[2:3], 0x50 

s_waitcnt     lgkmcnt(0) 

tbuffer_load_format_x  v1, v1, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_buffer_load_dword  s0, s[8:11], 0x04     

s_load_dwordx4  s[4:7], s[2:3], 0x58                       

s_waitcnt     lgkmcnt(0)  

v_add_i32     v0, vcc, s0, v0 

s_waitcnt     vmcnt(0)  

tbuffer_store_format_x  v1, v0, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_endpgm  
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tbuffer_store_format_x  v1, v0, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_endpgm  

s_buffer_load_dword  s0, s[4:7], 0x04 

s_buffer_load_dword  s1, s[4:7], 0x18 

s_buffer_load_dword  s4, s[8:11], 0x00 

s_waitcnt     lgkmcnt(0) 

s_mul_i32     s0, s12, s0 

s_add_i32     s0, s0, s1 

v_add_i32     v0, vcc, s0, v0 

v_lshlrev_b32  v0, 2, v0 

v_add_i32     v1, vcc, s4, v0 

s_load_dwordx4  s[4:7], s[2:3], 0x50 

s_waitcnt     lgkmcnt(0) 

tbuffer_load_format_x  v1, v1, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 
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s_endpgm  

THE NEW ISA 

Simpler and more efficient 

 Instructions for both sets of execution units inline 

No clauses 

– Lower instruction scheduling latency 

– Improved performance in previously clause-

bound cases 

– Lower power handling of control flow as 

control is closer 

No VLIW 

– Fewer compiler-induced bubbles in the 

instruction schedule 

Full support for exceptions, function calls and 

recusion 
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INSTRUCTION ARBITRATION AND DECODE 

  A Kernel freely mixes instruction types (Simplistic Programming Model, no weird rules) 

– Scalar/Scalar Memory, Vector, Vector Memory, Shared Memory, etc. 

 

  Every clock cycle, waves on one SIMDs are considered for instruction issue.  

– Four cycles to execute, four SIMDs… 

– At most one instruction per category 

– At most one instruction per wave 

 

  Up to a maximum of 5 instructions can issue per cycle, not including “internal” instructions.  

– 1 Vector  Arithmetic Logic Unit (ALU) 

– 1 Scalar ALU or Scalar Memory Read 

– 1Vector memory access (Read/Write/Atomic) 

– 1 Branch/Message - s_branch and s_cbranch_<cond>  

– 1 Local Data Share (LDS) 

– 1 Export or Global Data Share (GDS) 

– 1 Internal (s_nop, s_sleep, s_waitcnt, s_barrier, s_setprio) 

In
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BRANCHING 

float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

  //Registers r0 contains “a”, r1 contains “b” 

  //Value is returned in r2 

 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current exec mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all lanes fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

label0:  

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec) 

s_cbranch_execz label1 //Branch if all lanes fail 

v_sub_f32 r2,r1,r0 //result = b – a 

v_mul_f32 r2,r2,r1 //result = result * b 

label1: 

s_mov_b64 exec,s0 //Restore exec mask 

Optional:  

Use based on the number of 

instruction in conditional section. 

 Executed in branch unit 
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R/W CACHE 

Reads and writes cached 

– Bandwidth amplification 

– Improved behavior on more memory access patterns 

– Improved write to read reuse performance 

Relaxed memory model 

– Consistency controls available to control locality of load/store 

GPU Coherent  

– Acquire/Release semantics control data visibility across the machine (GLC bit on load/store) 

– L2 coherent = all CUs can have the same view of data 

Global atomics 

– Performed in L2 cache 

ECC protection for DRAM and SRAM 

 

16KB Vector DL1 

16 KB Scalar DL1  

32 KB Instruction L1 

Compute 

Unit 

64-128KB R/W L2 

per MC Channel 

64-128KB R/W L2 

per MC Channel 

X

B

A

R 

16KB Vector DL1 

Command Processors 

Compute 

Unit 
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SUMMARY 

An architecture designed to make GPGPU easier while maintaining high levels of power efficiency 

– Nearly 1 GFLOP/s double precision throughput 

– Higher efficiency of execution 

 No VLIW 

 Efficient dynamic vector/scalar instruction scheduling 

– ECC protection for memory system 

– Read/write caching 

 

Combined with advances in the OpenCL C++ support to make programming easier 
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QUESTIONS 
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