
MAKING GPGPU EASIER
OpenCL C++ and a flexible architecture

Lee Howes and Benedict Gaster

AMD Fusion System Software

2 | OpenGPU workshop | January 24, 2012 | Public

THE OPENCL C++

KERNEL LANGUAGE AND API

3 | OpenGPU workshop | January 24, 2012 | Public

THE HD7970

AND

GRAPHICS CORE NEXT

4 | OpenGPU workshop | January 24, 2012 | Public

GPU EXECUTION AS WAS

We often view GPU programming as a set of independent threads, more reasonably known as “work
items” in OpenCL:

kernel void blah(global float *input, global float *output) {

 output[get_global_id(0)] = input[get_global_id(0)];

}

Which we flatten to an intermediate language known as AMD IL:

Note that AMD IL contains short vector instructions

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

5 | OpenGPU workshop | January 24, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

– Each half of the device has a wave scheduler

 This can be seen as a shared, massively threaded, scalar core

The device as a whole can run up to about 500 threads

– 500 program counters across the two schedulers

– The device can execute around 32000 work items concurrently

6 | OpenGPU workshop | January 24, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

7 | OpenGPU workshop | January 24, 2012 | Public

IT WAS NEVER QUITE THAT SIMPLE

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines

– Data-parallel through hardware vectorization

– Instruction parallel through both multiple cores and VLIW units

The HD6970 issued a 4-way VLIW instruction per work item

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions

8 | OpenGPU workshop | January 24, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

VLIW instruction packet
Compiler-generated instruction level

parallelism for the VLIW unit.

Each instruction (x, y, z, w) executed

across the vector.

Notice the poor occupancy of VLIW slots

9 | OpenGPU workshop | January 24, 2012 | Public

WHY DID WE SEE INEFFICIENCY?

The architecture was well suited to graphics workloads:

– VLIW was easily filled by the vector-heavy graphics kernels

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient

Unfortunately, workloads change with time.

So how did we change the architecture to improve the situation?

10 | OpenGPU workshop | January 24, 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

11 | OpenGPU workshop | January 24, 2012 | Public

THE SIMD CORE

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed

globally

12 | OpenGPU workshop | January 24, 2012 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

Then let us consider the VLIW ALUs

13 | OpenGPU workshop | January 24, 2012 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

– A VLIW cluster of vector units

14 | OpenGPU workshop | January 24, 2012 | Public

THE SIMD CORE

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the

compiler

No VLIW!

The heart of Graphics Core Next:

– A scalar processor with four 16-wide vector units

– Each lane of the vector, and hence each IL work item, is now scalar

15 | OpenGPU workshop | January 24, 2012 | Public

The scalar core manages a large number of threads

– Each thread requires its set of vector registers

– Significant register state for both scalar and vector storage

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the

HD7970

THE SIMD CORE

16 | OpenGPU workshop | January 24, 2012 | Public

VECTOR UNITS

LANE 0 LANE 1 LANE 2 LANE 15

SIMD

 64 Single Precision multiply-add

 1 VLIW Instruction × 4 ALU ops  dependency limited

 Compiler manages register port conflicts

 Specialized, complex compiler scheduling

 Difficult assembly creation, analysis, and debug

 Complicated tool chain support

 Careful optimization required for peak performance

VLIW4 SIMD

LANE LANE LANE LANE

SIMD 0 SIMD 1 SIMD 2 SIMD 3

 0 1 2 15 0 1 2 15 0 1 2 15 0 1 2 15

 64 Single Precision multiply-add

 4 SIMDs × 1 ALU op  occupancy limited

 No register port conflicts

 Standardized compiler scheduling & optimizations

 Simplified assembly creation, analysis, and debug

 Simplified tool chain development and support

 Stable and predictable performance

GCN Quad SIMD

17 | OpenGPU workshop | January 24, 2012 | Public

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

THE NEW ISA

Simpler and more efficient

 Instructions for both sets of execution units inline

No clauses

– Lower instruction scheduling latency

– Improved performance in previously clause-

bound cases

– Lower power handling of control flow as

control is closer

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls and

recusion

18 | OpenGPU workshop | January 24, 2012 | Public

INSTRUCTION ARBITRATION AND DECODE

 A Kernel freely mixes instruction types (Simplistic Programming Model, no weird rules)

– Scalar/Scalar Memory, Vector, Vector Memory, Shared Memory, etc.

 Every clock cycle, waves on one SIMDs are considered for instruction issue.

– Four cycles to execute, four SIMDs…

– At most one instruction per category

– At most one instruction per wave

 Up to a maximum of 5 instructions can issue per cycle, not including “internal” instructions.

– 1 Vector Arithmetic Logic Unit (ALU)

– 1 Scalar ALU or Scalar Memory Read

– 1Vector memory access (Read/Write/Atomic)

– 1 Branch/Message - s_branch and s_cbranch_<cond>

– 1 Local Data Share (LDS)

– 1 Export or Global Data Share (GDS)

– 1 Internal (s_nop, s_sleep, s_waitcnt, s_barrier, s_setprio)

In
s
tru

c
tio

n
 A

rb
itra

tio
n

19 | OpenGPU workshop | January 24, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Optional:

Use based on the number of

instruction in conditional section.

 Executed in branch unit

20 | OpenGPU workshop | January 24, 2012 | Public

R/W CACHE

Reads and writes cached

– Bandwidth amplification

– Improved behavior on more memory access patterns

– Improved write to read reuse performance

Relaxed memory model

– Consistency controls available to control locality of load/store

GPU Coherent

– Acquire/Release semantics control data visibility across the machine (GLC bit on load/store)

– L2 coherent = all CUs can have the same view of data

Global atomics

– Performed in L2 cache

ECC protection for DRAM and SRAM

16KB Vector DL1

16 KB Scalar DL1

32 KB Instruction L1

Compute

Unit

64-128KB R/W L2

per MC Channel

64-128KB R/W L2

per MC Channel

X

B

A

R

16KB Vector DL1

Command Processors

Compute

Unit

21 | OpenGPU workshop | January 24, 2012 | Public

SUMMARY

An architecture designed to make GPGPU easier while maintaining high levels of power efficiency

– Nearly 1 GFLOP/s double precision throughput

– Higher efficiency of execution

 No VLIW

 Efficient dynamic vector/scalar instruction scheduling

– ECC protection for memory system

– Read/write caching

Combined with advances in the OpenCL C++ support to make programming easier

22 | OpenGPU workshop | January 24, 2012 | Public

QUESTIONS

23 | OpenGPU workshop | January 24, 2012 | Public

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

© 2011 Advanced Micro Devices, Inc.

