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WE HEAR A LOT OF 

AMD’s GPUs are hard to program 

OpenCL requires a lot of boiler plate code not needed by other compute models: 

– CUDA, clearly 

– pragma models… but do we really want to take that route? 
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SO IN THIS TALK 

Will introduce: 

– AMD’s latest generation GPU that makes GPGPU programming a whole lot simpler and faster 

– The HSA architecture that extends this simpler model across the platform 

– OpenCL C++ a simpler programming model for GPGPU programming 

– And some thoughts about how we’re trying to improve this in the future 
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GPUS AND CPUS 
DESIGNING TO SOLVE A GIVEN PROBLEM 
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TAKING A REALISTIC LOOK AT GPU COMPUTING 

GPUs are not magic 

– We’ve often heard about 100x performance improvements 

– These are usually the result of poor CPU code 
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TAKING A REALISTIC LOOK AT GPU COMPUTING 

GPUs are not magic 

– We’ve often heard about 100x performance improvements 

– These are usually the result of poor CPU code 

 

 

Usually? 

– Hmm… 

 

Some people talk about thousands of threads and cores, too… 

– Marketing and reality are rarely the same 
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CPUS AND GPUS 

Different design goals: 

– CPU design is based on maximizing performance of a single thread 

– GPU design aims to maximize throughput at the cost of lower performance for each thread 

 

CPU use of area: 

– Transistors are dedicated to branch prediction, out of order logic and caching to reduce latency to 

memory , to allow efficient instruction prefetching and deep pipelines (fast clocks) 

 

GPU use of area: 

– Transistors concentrated on ALUs and registers 

– Registers store thread state and allow fast switching between threads to cover (rather than reduce) 

latency 
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REDUCING LATENCY ON THE CPU 

Out of order execution to cover instruction latency (and increase parallelism) 

Caches to reduce time to memory 

Stall 

SIMD Operation 
Instruction 0 

Instruction 1 

Stall 

Lanes 0-3 

Cac

he 

Memory 
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MAINTAINING THROUGHPUT ON THE GPU 

GPUs also have caches 

– The goal is generally to improve spatial locality rather than temporal 

Multi-cycle a wide vector thread 

– Reduce instruction decode overhead, cover instruction latency 

Run multiple threads concurrently, interleaving to cover latency 

 

 

 

 

 

 

 

 

 

Cache Memory 

Wave 2 instruction 0 

Wave 1 instruction 0 



14 |  UT Austin |  March 1, 2012  |  Public 

COSTS 

The CPU approach: 

– Requires large caches 

– Dedicates transistors to out-of-order control 

 

The GPU approach: 

– Requires wide hardware vectors, not all code is easily vectorized 

– Requires considerable state storage to support active threads 

– Note: we need not pretend that OpenCL or CUDA are NOT vectorization 

 The entire point of the design is hand vectorization 

 

These two approaches suit different algorithm designs 

Instruction decode 

Register state 

ALUs 
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THINKING ABOUT 

PROGRAMMING 
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a CPU? 
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– Take an input array 
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What’s the fastest way to perform an associative reduction across an array on a CPU? 

– Take an input array 

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores) 
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a CPU? 

– Take an input array 

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores) 

– Iterate to produce a sum in each block 

                       

           

float sum( 0 ) 

for( i = n to n + b )  

    sum += input[i] 
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a CPU? 

– Take an input array 

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores) 

– Iterate to produce a sum in each block 

– Reduce across threads 

           

float sum( 0 ) 

for( i = n to n + b )  

    sum += input[i] 

float reductionValue( 0 ) 

for( t in threadCount ) 

    reductionValue += t.sum 
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THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a CPU? 

– Take an input array 

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores) 

– Iterate to produce a sum in each block 

– Reduce across threads 

– Vectorize 

 

float reductionValue( 0 ) 

for( t in threadCount ) 

    reductionValue += t.sum 

float4 sum( 0, 0, 0, 0 ) 

for( i = n/4 to (n + b)/4 )  

    sum += input[i] 

float scalarSum = sum.x + sum.y + sum.z + sum.w 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores) 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores) 

– Iterate to produce a sum in each block 

                       

                                                                                   

float sum( 0 ) 

for( i = n to n + b )  

    sum += input[i] 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores) 

– Iterate to produce a sum in each block 

– Reduce across threads 

                                                                                   

float sum( 0 ) 

for( i = n to n + b )  

    sum += input[i] 

float reductionValue( 0 ) 

for( t in threadCount ) 

    reductionValue += t.sum 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores) 

– Iterate to produce a sum in each block 

– Reduce across threads 

– Vectorize (this bit may involve a different kernel dispatch given current models) 

 

float reductionValue( 0 ) 

for( t in threadCount ) 

    reductionValue += t.sum 

float64 sum( 0, …, 0 ) 

for( i = n/64 to (n + b)/64 )  

    sum += input[i] 

float scalarSum = waveReduce(sum) 
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THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE 

What’s the fastest way to perform an associative reduction across an array on a GPU? 

– Take an input array 

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores) 

– Iterate to produce a sum in each block 

– Reduce across threads 

– Vectorize (this bit may involve a different kernel dispatch given current models) 

 

float reductionValue( 0 ) 

for( t in threadCount ) 

    reductionValue += t.sum 

float64 sum( 0, …, 0 ) 

for( i = n/64 to (n + b)/64 )  

    sum += input[i] 

float scalarSum = waveReduce(sum) 

Current models ease programming by viewing the vector as a set of scalars 

ALUs, apparently though not really independent, with varying degree of 

hardware assistance (and hence overhead): 

float sum( 0 ) 

for( i = n/64 to (n + b)/64; i +=  64)  

    sum += input[i] 

float scalarSum = waveReduceViaLocalMemory(sum) 
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THEY DON’T SEEM SO DIFFERENT! 

More blocks of data 

– More cores 

– More threads 

 

 

 

Wider threads 

– 64 on high end AMD GPUs 

– 4/8 on current CPUs 

Hard to develop efficiently for wide threads 

 Lots of state, makes context switching and stacks 

problematic 

float64 sum( 0, …, 0 ) 

for( i = n/64 to (n + b)/64 )  

    sum += input[i] 

float scalarSum = waveReduce(sum) 

float4 sum( 0, 0, 0, 0 ) 

for( i = n/4 to (n + b)/4 )  

    sum += input[i] 

float scalarSum = sum.x + sum.y + sum.z + sum.w 
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THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL? 

On GPU cores: 

– We need a lot of data parallelism 

– Algorithms that can be mapped to multiple cores and multiple threads per core  

– Approaches that map efficiently to wide SIMD units 

– So a nice simple functional “map” operation is great! 

 

 

 

 

 

 

This is basically the OpenCLtm model 

Array 

O

p 

O

p 

O

p … 

Array.map(Op) 
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THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL? 

On CPU cores: 

– Some data parallelism for multiple cores 

– Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters 

 Does AVX change this? 

– High clock rates and caches make serial execution efficient 

– So in addition to the simple map (which boils down to a for loop on the CPU) we can do complex task 

graphs 
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SO TO SUMMARIZE THAT 

i=0 
i++ 

load x(i) 
fmul 
store 

cmp i (1000000) 
bc 

…
 

…
 

…
 

…
 

i,j=0 
i++ 
j++ 

load x(i,j) 
fmul 
store 

cmp j (100000) 
bc 

cmp i (100000) 
bc 

2D array  
representing 
very large  

dataset 

Loop 1M  
times for  
1M pieces  

of data 

Coarse-grain data 
parallel Code 

Maps very well to 
Throughput-oriented 
data parallel engines 

i=0 
i++ 

load x(i) 
fmul 
store 

cmp i (16) 
bc 

…
 

…
 

Loop 16 times for 16 
pieces of data 

Fine-grain data 
parallel Code 

Maps very well to 
integrated SIMD 

dataflow (ie: SSE) 

Nested data 
parallel Code 

Lots of conditional data 
parallelism.  Benefits from 
closer coupling between 

CPU & GPU 
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integrated SIMD 
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Lots of conditional data 
parallelism.  Benefits from 
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CPU & GPU 

Discrete GPU configurations suffer from 

communication latency. 

 

Nested data parallel/braided parallel code 

benefits from close coupling. 

 

Discrete GPUs don’t provide it well. 

 

But each individual core isn’t great at certain 

types of algorithm… 
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CUE APU 

Tight integration of narrow and wide vector kernels 

 

Combination of high and low degrees of threading 

 

Fast turnaround 

– Negligible kernel launch time 

– Communication between kernels 

– Shared buffers 

 

For example: 

– Generating a tree structure on the CPU cores, processing the scene on the GPU cores 

– Mixed scale particle simulations (see a later talk) 

CPU 

kernel 

GPU 

kernel 

Data 
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HOW DO WE USE THESE DEVICES? 

Heterogeneous programming isn’t easy 

– Particularly if you want performance 

 

To date: 

– CPUs with visible vector ISAs 

– GPUs mostly lane-wise (implicit vector) ISAs 

– Clunky separate programming models with explicit data movement 

 

How can we target both? 

– With a fair degree of efficiency 

– True shared memory with passable pointers 

 

 Let’s talk about programming models… 
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THE STATE OF THE ART 
GPU PROGRAMMING MODELS IN THE PRESENT 
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TODAY’S EXECUTION MODEL 

Single program multiple data (SPMD) 

– Same kernel runs on: 

All compute units 

All processing elements 

– Purely “data parallel” mode 

– Device model:  

Device runs a single kernel simultaneously 

Separation between compute units is relevant for memory model only. 
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Single program multiple data (SPMD) 

– Same kernel runs on: 

All compute units 

All processing elements 

– Purely “data parallel” mode 

– Device model:  

Device runs a single kernel simultaneously 

Separation between compute units is relevant for memory model only. 
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TODAY’S EXECUTION MODEL 

Single program multiple data (SPMD) 

– Same kernel runs on: 

All compute units 

All processing elements 

– Purely “data parallel” mode 

– Device model:  

Device runs a single kernel simultaneously 

Separation between compute units is relevant for memory model only. 

 

Modern CPUs & GPUs can support more ! 

… 

…
 

…
 

WG 
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MODERN GPU (& CPU) CAPABILITIES 

Modern GPUs can execute a different instruction stream per core  

– Some even have a few HW threads per core (each runs separated streams) 

This is still a highly parallelized machine! 

– HW thread executes N-wide vector instructions (8-64 wide)   

– Scheduler switches HW threads on the fly to hide memory misses 
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MODERN GPU (& CPU) CAPABILITIES 

Modern GPUs can execute a different instruction stream per core  

– Some even have a few HW threads per core (each runs separated streams) 

This is still a highly parallelized machine! 

– HW thread executes N-wide vector instructions (8-64 wide)   

– Scheduler switches HW threads on the fly to hide memory misses 

 

 

 

Shader Core Shader Core Shader Core Shader Core
Input 

Assembler
Rasterizer

Output 
blending

Input 
Assembly

Vertex 
Shader

Geometry 
Assembly

Geometry
Assembler

Rasterization

Pixel 
Shader

Pixel 
Shader

Pixel 
ShaderPixel 

Shader

Blend

Blend

Blend

Blend

Time
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PERSISTENT THREADS 

People emulate more flexible MPMD models using “persistent 

threads” 

– Each core executes a scheduler loop 

– Takes tasks off a queue 

– Branches to particular code for that task 

 

This bypasses the hardware scheduler 

– Gives flexibility without necessary significant overhead 

– Reduces the ability of the hardware to flexibly schedule for 

power reduction in the absence of context switching 

– The more cores we add the worse this is 

GPU 

Core 

Task A 

Task B 

Task C 

A 

Queue 

C 

A 



45 |  UT Austin |  March 1, 2012  |  Public 

PERSISTENT THREADS 

People emulate more flexible MPMD models using “persistent 

threads” 

– Each core executes a scheduler loop 

– Takes tasks off a queue 

– Branches to particular code for that task 

 

This bypasses the hardware scheduler 

– Gives flexibility without necessary significant overhead 

– Reduces the ability of the hardware to flexibly schedule for 

power reduction in the absence of context switching 

– The more cores we add the worse this is 

GPU 

Core 

Task A 

Task B 

Task C 

Queue 

A 

C 

A 



46 |  UT Austin |  March 1, 2012  |  Public 

PERSISTENT THREADS 
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OPENCL, CUDA, C++AMP, ARE THESE GOOD MODELS? 

Designed for wide data-parallel computation 

– Pretty low level 

– There is a lack of good scheduling and coherence control 

– We see “cheating” all the time: the lane-wise programming model only  becomes efficient when we 

program it like the vector model it really is, making assumptions about wave or warp synchronicity 

 

However: they’re better than SSE! 

– We have proper scatter/gather memory access 

– The lane wise programming does help: we still have to think about vectors, but it’s much easier to do 

than in a vector language 

– We can even program lazily and pretend that a single work item is a thread and yet it still (sortof) works 
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THE WORLD IS CHANGING, SLOWLY 

These models are not static 

– Obviously there are serious downsides to that… 

 

OpenCL 1.2 was recently released, 2.0 is in development and making good progress 

 

NVIDIA has been adding features to CUDA with some persistence 
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C++AMP 

Microsoft has decided on a single source model called C++AMP 

– Sits on top of DirectX 

– Highly limited as a result of this (some way behind CUDA and OpenCL currently) 

– However, from an ease of access point of view there are clear benefits 

 

For example: 

void ampSquareExample(const std::vector<int> &in, std::vector<int> &out) { 

  concurrency::array_view<const int> avIn(in.size(), in); 

  concurrency::array_view<int> avOut(out.size(), out); 

  concurrency::parallel_for_each(avOut.extent, [=](concurrency::index<1> idx) restrict(amp) { 

    avOut[idx] = avIn[idx] * avIn[idx]; 

  }); 

  avOut.synchronize(); 

} 
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OPENACC 

 Looking at it from the OpenMP pragma directive angle we see OpenACC 

– Initially developed by PGI, NVIDIA, Cray and CAPS 

 

Clear benefits for developers starting with C or fortran source 

– Though it’s a shame to not be integrated cleanly with the language and type system 

 

The aim is to merge this technology with OpenMP and, quoting from the OpenACC web site: 

– The intent is that the lessons learned from use an implementations of the OpenACC API will lead to a 

more complete and robust OpenMP heterogeneous computing standard… 

 

#pragma acc parallel… 
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HOW DO WE MOVE FORWARD? 

We should concentrate on ways to abstract the algorithms over the features that differ? 

– A difficult challenge 

– For now we seem to be stuck with inefficient raw-data-parallelism or expertly coded SIMD algorithms 

 

First of all let’s look at making the architecture more flexible 

– From there we can more flexibly think about programming models 

– We become less restricted 
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IMPROVING THE GPU’S 

PROGRAMMABILITY 
THE HD7970 AND GRAPHICS CORE NEXT 
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GPU EXECUTION AS WAS 

We often view GPU programming as a set of independent threads, more reasonably known as “work 
items” in OpenCL: 

kernel void blah(global float *input, global float *output) { 

  output[get_global_id(0)] = input[get_global_id(0)]; 

} 

 

Which we flatten to an intermediate language known as AMD IL:  

 

Note that AMD IL contains short vector instructions 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 

–  Each half of the device has a wave scheduler 

 This can be seen as a shared, massively threaded, scalar core 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 

–  Each half of the device has a wave scheduler 

 This can be seen as a shared, massively threaded, scalar core 

 

The device as a whole can run up to about 500 threads 

                                                

                                                             



58 |  UT Austin |  March 1, 2012  |  Public 

MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 

–  Each half of the device has a wave scheduler 

 This can be seen as a shared, massively threaded, scalar core 

 

The device as a whole can run up to about 500 threads 

– 500 program counters across the two schedulers 
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MULTIPLE CORES 

We can run that IL across multiple cores in the GPU: 

– The HD6970 architecture has 24 vector cores 

–  Each half of the device has a wave scheduler 

 This can be seen as a shared, massively threaded, scalar core 

 

The device as a whole can run up to about 500 threads 

– 500 program counters across the two schedulers 

– The device can execute around 32000 work items concurrently 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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IT WAS NEVER QUITE THAT SIMPLE 

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines 

– Data-parallel through hardware vectorization 

– Instruction parallel through both multiple cores and VLIW units 

The HD6970 issued a 4-way VLIW instruction per work item 

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane 

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 

Clause header 
Work executed by the 

shared scalar unit 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 

Clause body 
Units of work dispatched 

by the shared scalar unit 

Clause header 
Work executed by the 

shared scalar unit 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 

Clause body 
Units of work dispatched 

by the shared scalar unit 

Clause header 
Work executed by the 

shared scalar unit 

VLIW instruction packet 
Compiler-generated instruction level 

parallelism for the VLIW unit. 

Each instruction (x, y, z, w) executed 

across the vector. 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 

Clause body 
Units of work dispatched 

by the shared scalar unit 

Clause header 
Work executed by the 

shared scalar unit 

VLIW instruction packet 
Compiler-generated instruction level 

parallelism for the VLIW unit. 

Each instruction (x, y, z, w) executed 

across the vector. 

Notice the poor occupancy of VLIW slots 
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WHY DID WE SEE INEFFICIENCY? 

The architecture was well suited to graphics workloads: 

– VLIW was easily filled by the vector-heavy graphics kernels 

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient 

 

Unfortunately, workloads change with time. 

 

So how did we change the architecture to improve the situation? 
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AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 
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AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

                               

 

                            

                                               

                                       

 

                               



75 |  UT Austin |  March 1, 2012  |  Public 

AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

Full read/write L1 data caches 

 

SIMD cores grouped in fours 

– Scalar data and instruction cache per cluster 

– L1, LDS and scalar processor per core 

 

Up to 32 cores / compute units 
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AMD RADEON HD7970 - GLOBALLY 
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THE SIMD CORE 

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed 

globally 
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THE SIMD CORE 

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed 

globally 
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THE SIMD CORE 

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size 
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THE SIMD CORE 

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size 

Then let us consider the VLIW ALUs 
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THE SIMD CORE 

Remember we could view the architecture two ways: 

– An array of VLIW units 
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THE SIMD CORE 

Remember we could view the architecture two ways: 

– An array of VLIW units 

– A VLIW cluster of vector units 
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THE SIMD CORE 

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the 

compiler 

No VLIW! 

 

 

 

 

 

 

 

The heart of Graphics Core Next: 

– A scalar processor with four 16-wide vector units 

– Each lane of the vector, and hence each IL work item, is now scalar 
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The scalar core manages a large number of threads 

– Each thread requires its set of vector registers 

– Significant register state for both scalar and vector storage 

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the 

HD7970 

THE SIMD CORE 
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– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the 

HD7970 

THE SIMD CORE 
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s_buffer_load_dword  s0, s[4:7], 0x04 

s_buffer_load_dword  s1, s[4:7], 0x18 

s_buffer_load_dword  s4, s[8:11], 0x00 

s_waitcnt     lgkmcnt(0) 

s_mul_i32     s0, s12, s0 

s_add_i32     s0, s0, s1 

v_add_i32     v0, vcc, s0, v0 

v_lshlrev_b32  v0, 2, v0 

v_add_i32     v1, vcc, s4, v0 

s_load_dwordx4  s[4:7], s[2:3], 0x50 

s_waitcnt     lgkmcnt(0) 

tbuffer_load_format_x  v1, v1, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_buffer_load_dword  s0, s[8:11], 0x04     

s_load_dwordx4  s[4:7], s[2:3], 0x58                       

s_waitcnt     lgkmcnt(0)  

v_add_i32     v0, vcc, s0, v0 

s_waitcnt     vmcnt(0)  

tbuffer_store_format_x  v1, v0, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_endpgm  

THE NEW ISA 

Simpler and more efficient 

 Instructions for both sets of execution units inline 
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THE NEW ISA 

Simpler and more efficient 

 Instructions for both sets of execution units inline 
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s_buffer_load_dword  s0, s[4:7], 0x04 

s_buffer_load_dword  s1, s[4:7], 0x18 

s_buffer_load_dword  s4, s[8:11], 0x00 

s_waitcnt     lgkmcnt(0) 

s_mul_i32     s0, s12, s0 

s_add_i32     s0, s0, s1 

v_add_i32     v0, vcc, s0, v0 

v_lshlrev_b32  v0, 2, v0 

v_add_i32     v1, vcc, s4, v0 

s_load_dwordx4  s[4:7], s[2:3], 0x50 

s_waitcnt     lgkmcnt(0) 

tbuffer_load_format_x  v1, v1, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_buffer_load_dword  s0, s[8:11], 0x04     

s_load_dwordx4  s[4:7], s[2:3], 0x58                       

s_waitcnt     lgkmcnt(0)  

v_add_i32     v0, vcc, s0, v0 

s_waitcnt     vmcnt(0)  

tbuffer_store_format_x  v1, v0, s[4:7],  

    0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT] 

s_endpgm  

THE NEW ISA 

Simpler and more efficient 

 Instructions for both sets of execution units inline 

No clauses 

– Lower instruction scheduling latency 

– Improved performance in previously clause-

bound cases 

– Lower power handling of control flow as 

control is closer 

No VLIW 

– Fewer compiler-induced bubbles in the 

instruction schedule 

Full support for exceptions, function calls and 

recusion 
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BRANCHING 

float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

  //Registers r0 contains “a”, r1 contains “b” 

  //Value is returned in r2 

 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current exec mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all lanes fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

label0:  

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec) 

s_cbranch_execz label1 //Branch if all lanes fail 

v_sub_f32 r2,r1,r0 //result = b – a 

v_mul_f32 r2,r2,r1 //result = result * b 

label1: 

s_mov_b64 exec,s0 //Restore exec mask 
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BRANCHING 
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BRANCHING 

float fn0(float a,float b) 
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BRANCHING 

float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

  //Registers r0 contains “a”, r1 contains “b” 

  //Value is returned in r2 

 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current exec mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all lanes fail 
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label0:  

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec) 
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v_mul_f32 r2,r2,r1 //result = result * b 

label1: 

s_mov_b64 exec,s0 //Restore exec mask 
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BRANCHING 

float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

  //Registers r0 contains “a”, r1 contains “b” 

  //Value is returned in r2 

 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current exec mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all lanes fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

label0:  

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec) 

s_cbranch_execz label1 //Branch if all lanes fail 

v_sub_f32 r2,r1,r0 //result = b – a 

v_mul_f32 r2,r2,r1 //result = result * b 

label1: 

s_mov_b64 exec,s0 //Restore exec mask 

Optional:  

Use based on the number of 

instruction in conditional section. 

 Executed in branch unit 
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IMPROVING SYSTEM 

PROGRAMMABILITY 
THE HETEROGENEOUS SYSTEM ARCHITECTURE 



95 |  UT Austin |  March 1, 2012  |  Public 

HETEROGENEOUS SYSTEM ARCHITECTURE 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common 

Manufacturing 

Technology 
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HETEROGENEOUS SYSTEM ARCHITECTURE 

Optimized 

Platforms 

Bi-Directional Power 

Mgmt between CPU 

and GPU 

GPU Compute C++ 

support 

User mode schedulng 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common 

Manufacturing 

Technology 
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HETEROGENEOUS SYSTEM ARCHITECTURE 

Architectural 

Integration 

Unified Address Space 

for CPU and GPU 

Fully coherent memory 

between CPU & GPU 

GPU uses pageable 

system memory via 

CPU pointers 

Optimized 

Platforms 

Bi-Directional Power 

Mgmt between CPU 

and GPU 

GPU Compute C++ 

support 

User mode schedulng 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common 

Manufacturing 

Technology 
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HETEROGENEOUS SYSTEM ARCHITECTURE 

System 

Integration 

GPU compute  

context switch 

GPU graphics  

pre-emption 

Quality of Service 

Extend to  

Discrete GPU 

Architectural 

Integration 

Unified Address Space 

for CPU and GPU 

Fully coherent memory 

between CPU & GPU 

GPU uses pageable 

system memory via 

CPU pointers 

Optimized 

Platforms 

Bi-Directional Power 

Mgmt between CPU 

and GPU 

GPU Compute C++ 

support 

User mode schedulng 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common 

Manufacturing 

Technology 
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HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM 

Open Architecture, published specifications 

– HSAIL virtual ISA 

– HSA memory model 

– HSA dispatch 

 

 ISA agnostic for both CPU and GPU 
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HSA INTERMEDIATE LAYER - HSAIL 

HSAIL is a virtual ISA for parallel programs 

– Finalized to ISA by a JIT compiler or “Finalizer” 

Explicitly parallel 

– Designed for data parallel programming 

Support  for exceptions, virtual functions,   

and other high level language features 

Syscall methods  

– GPU code can call directly  to system services, IO, printf, etc 

Debugging support 
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HSA MEMORY MODEL 

Designed to be compatible with C++11, Java and .NET Memory Models 

Relaxed consistency memory model for parallel compute performance 

 Loads and stores can be re-ordered by the finalizer  

Visibility controlled by: 

– Load.Acquire*, Load.Dep, Store.Release* 

– Barriers 

 

 

*sequential consistent ordering 
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HSA ENABLES TASK QUEUING RUNTIMES 

Popular pattern for task- and data-parallel programming on SMP systems today 

 

Characterized by: 

– A work queue per core 

– Runtime library that divides large loops into tasks and distributes to queues 

– A work stealing runtime that keeps the system balanced 

 

HSA is designed to extend this pattern to run on heterogeneous systems 
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TASK QUEUING RUNTIME ON CPUS 

CPU Threads GPU Threads Memory 

Work Stealing Runtime 

CPU 

Worker 

Q 

CPU 

Worker 

Q 

CPU 

Worker 

Q 

CPU 

Worker 

Q 

x86 CPU x86 CPU x86 CPU x86 CPU 
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TASK QUEUING RUNTIME ON THE FSA PLATFORM 

CPU Threads GPU Threads Memory 

Work Stealing Runtime 

CPU 

Worker 

Q 

CPU 

Worker 

Q 

CPU 

Worker 
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CPU 

Worker 
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GPU  

Manager 
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TASK QUEUING RUNTIME ON THE FSA PLATFORM 
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Fetch and Dispatch 
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HETEROGENEOUS COMPUTE DISPATCH 

How compute dispatch operates 

today in the driver model 

 

 

 
How compute dispatch 

improves tomorrow under HSA 

 

 

 



107 |  UT Austin |  March 1, 2012  |  Public 

TODAY’S COMMAND AND DISPATCH FLOW 
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TODAY’S COMMAND AND DISPATCH FLOW 
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FUTURE COMMAND AND DISPATCH FLOW 

Application 

A 

Application 

B 

Application 

C 

Optional Dispatch 

Buffer 

GPU 

HARDWARE 

Hardware Queue 

A 

A A 

Hardware Queue 

B 

B B 

Hardware Queue 

C 

C C 

C 

C 

 No APIs (required) 

 No soft queues 

 No user mode drivers 

 No kernel mode transitions 

 Far less overhead! 

 Application codes to the 

hardware 

 User mode queuing 

 Hardware scheduling 

 Low dispatch times 
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B to CPU1   (do not delete – part of animation) 

CPU1 to B    (do not delete – part of animation) 

C to CPU2    (do not delete – part of animation) 

A to CPU1    (do not delete – part of animation) 

App to C    (do not delete – part of animation) 

App to A    (do not delete – part of animation) 

Application / Runtime 

FUTURE COMMAND AND DISPATCH CPU <-> GPU 

B A F E D C G 

CPU2 CPU1 GPU 

Click 3 and 4 
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IMPROVING THE 

PROGRAMMING MODEL 
Baby steps… the host API and kernel language 
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VECTOR ADDITION - HOST PROGRAM 
// create the OpenCL context on a GPU device 

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 

 

// get the list of GPU devices associated with context 

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb); 

devices = malloc(cb); 

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL); 

 

// create a command-queue 

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL); 

 

// allocate the buffer memory objects 

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL); 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY, sizeof(cl_float)*n, NULL,  NULL); 

 

// create the program 

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL); 
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VECTOR ADDITION - HOST PROGRAM 
// build the program 

err = clBuildProgram(program, 0, NULL, NULL, NULL,  
                                         NULL); 

 

// create the kernel 

kernel = clCreateKernel(program, “vec_add”, NULL); 

 

// set the args values 

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], sizeof(cl_mem)); 

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],  sizeof(cl_mem)); 

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  sizeof(cl_mem)); 

// set work-item dimensions 

global_work_size[0] = n; 

 

// execute kernel 

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL); 

 

// read output array 

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL); 
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VECTOR ADDITION - HOST PROGRAM 
// create the OpenCL context on a GPU device 

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, 
NULL, NULL); 

 

// get the list of GPU devices associated with context 

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,  

                                        NULL, &cb); 

devices = malloc(cb); 

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL); 

 

// create a command-queue 

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL); 

 

// allocate the buffer memory objects 

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);} 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,  

                            sizeof(cl_float)*n, NULL, NULL); 

// create the program 

program = clCreateProgramWithSource(context, 1, &program_source, NULL, 
NULL); 

 

// build the program 

err = clBuildProgram(program, 0, NULL, NULL, NULL, 
NULL); 

 

// create the kernel 

kernel = clCreateKernel(program, “vec_add”, NULL); 

 

// set the args values 

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0],  

                                 sizeof(cl_mem)); 

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], 

                                 sizeof(cl_mem)); 

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  

                                  sizeof(cl_mem)); 

// set work-item dimensions 

global_work_size[0] = n; 

 

// execute kernel 

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 
NULL, global_work_size, NULL, 0, NULL, NULL); 

 

// read output array 

err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 
0, n*sizeof(cl_float), dst, 0, NULL, NULL); 

Define platform and queues 

Define memory objects 

Create the program 

Build the program 

Create and setup kernel 

Execute the kernel 

Read results on the host 

It’s complicated, but most of this is “boilerplate” and not as bad as it looks. 



118 |  UT Austin |  March 1, 2012  |  Public 

HERE'S THE SAME PROGRAM IN CUDA 

int main(int argc, char** argv) { 

    int N = 50000; 

    size_t size = N * sizeof(float); 

  

h_A = (float*)malloc(size); 

h_B = (float*)malloc(size); 

h_C = (float*)malloc(size); 

 

RandomInit(h_A, N);  

RandomInit(h_B, N); 

 

cudaMalloc((void**)&d_A, size);  

cudaMalloc((void**)&d_B, size); 

cudaMalloc((void**)&d_C, size); 

 

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ; 

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 

 

int blocksPerGrid = (N + 256 - 1) / 256; 

vecAdd<<<blocksPerGrid, 256>>>( d_A, d_B, d_C, N); 

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) ; 
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CUDA EXAMPLE 

Clearly simpler than the OpenCL API code! 

– However, still a based C API that is not type safe!  

– Requires a non-standard host compiler, not just a device compiler! 

 

Can we not do something different? 
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CUDA EXAMPLE 

Clearly simpler than the OpenCL API code! 

– However, still a based C API that is not type safe!  

– Requires a non-standard host compiler, not just a device compiler! 

 

Can we not do something different? 

 

 In the words of my colleague: 

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!” 
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CUDA EXAMPLE 

Clearly simpler than the OpenCL API code! 

– However, still a based C API that is not type safe!  

– Requires a non-standard host compiler, not just a device compiler! 

 

Can we not do something different? 

 

 In the words of my colleague: 

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!” 

 

 In the context, I think he has a point… 
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CUDA EXAMPLE 

Clearly simpler than the OpenCL API code! 

– However, still a based C API that is not type safe!  

– Requires a non-standard host compiler, not just a device compiler! 

 

Can we not do something different? 

 

 In the words of my colleague: 

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!” 

 

 In the context, I think he has a point… 

 

So how about C++? 
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THE C++ INTERFACE 

Khronos has defined a common C++ header file containing a high level interface to OpenCL. 

 

Key features: 

– Uses common defaults for the  platform and command-queue … saving the programmer from extra 

coding for the most common use cases. 

– Simplifies basic API by bundling key parameters with the objects rather than verbose and repetitive 

argument lists. 

– Reference counting 

– Kernel functors 

– Statically checked information routines 
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C++ KERNELS 

OpenCL C++ Kernel language 

– Develop device code using full C++ 

– Extending OpenCL address spaces in the C++ type system  

 Automatic inference of address spaces, handle this pointer address space deduction 

 

Combine C++ Host API and C++ Kernel language: 

– Shared pointer representation, allow support for pointer based data-structures shared between CPU 

and GPU 
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C++ INTERFACE: SETTING UP THE HOST PROGRAM 

Single header files … both standard 

#include <CL/cl.hpp> // Khronos C++ Wrapper API 

 

Setup the functional interface (used by the C++ OpenCL API) 

#include <functional> 

 

Everything defined with single namespace: 

using namespace cl; 
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POINTER AND FUNCTOR EXAMPLE 

cl::Pointer<int> x = cl::malloc<int>(N); 

for (int i = 0; i < N; i++)  {  *(x+i)= rand(); } 

 

std::function<Event (const cl::EnqueueArgs&, cl::Pointer<int>) plus =  

    make_kernel<cl::Pointer<int>, int>(  

        “kernel void plus(global Pointer<int> io) 

         { 

            int I = get_global_id(0); 

            *(io+i) = *(io+i) * 2; 

         }”); 

plus(EnqueueArgs(NDRange(N)), x); 

 

for(int i = 0; i < N; i++) {  cout << *(x+i) << endl; } 
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POINTER AND FUNCTOR EXAMPLE 

cl::Pointer<int> x = cl::malloc<int>(N); 

for (int i = 0; i < N; i++)  {  *(x+i)= rand(); } 

 

std::function<Event (const cl::EnqueueArgs&, cl::Pointer<int>) plus =  

    make_kernel<cl::Pointer<int>, int>(  

        “kernel void plus(global Pointer<int> io) 

         { 

            int I = get_global_id(0); 

            *(io+i) = *(io+i) * 2; 

         }”); 

plus(EnqueueArgs(NDRange(N)), x); 

 

for(int i = 0; i < N; i++) {  cout << *(x+i) << endl; } 

 

• Defaults - no need to reference 

context, command queue. 

• Program automatically created 

and compiled too. 
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OPENCL KERNEL LANGUAGE 

template<address-space aspace_> 

struct Shape { 

   int foo(aspace_ Colour&) global + local; 

   int foo(aspace_ Colour&) private; 

   int bar(void); 

}; 

 

operator (const decltype(this)& rhs) -> decltype(this)& 

{ 

    if (this == &rhs) { return *this; } 

    … 

    return *this; 

} 
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OPENCL KERNEL LANGUAGE 

template<address-space aspace_> 

struct Shape { 

   int foo(aspace_ Colour&) global + local; 

   int foo(aspace_ Colour&) private; 

   int bar(void); 

}; 

 

operator (const decltype(this)& rhs) -> decltype(this)& 

{ 

    if (this == &rhs) { return *this; } 

    … 

    return *this; 

} 

• Abstract over address space 

qualifiers. 

• Methods can be annotated with 

address spaces, controls “this” 

pointer location. Extended to 

overloading. 

• Default address space for “this” is 

deduced automatically. Support 

default constructors. 
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OPENCL KERNEL LANGUAGE 

template<address-space aspace_> 

struct Shape { 

   int foo(aspace_ Colour&) global + local; 

   int foo(aspace_ Colour&) private; 

   int bar(void); 

}; 

 

operator (const decltype(this)& rhs) -> decltype(this)& 

{ 

    if (this == &rhs) { return *this; } 

    … 

    return *this; 

} 

• C+11 features used to handle 

cases when type of “this” 

needs to be written down by the 

developer.  

• Abstract over address space 

qualifiers. 

• Methods can be annotated with 

address spaces, controls “this” 

pointer location. Extended to 

overloading. 

• Default address space for “this” is 

deduced automatically. Support 

default constructors. 
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IMPROVING THE 

PROGRAMMING MODEL 
The future: fixing the composition problem 
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COMPOSABILITY IN CURRENT MODELS 

Current GPU programming models suffer from composability limitations 

 

The data-parallel model works in simple cases. Its fixed, limited nature breaks down when: 

– We need to use long-running threads to more efficiently perform reductions 

– We want to synchronize inside and outside library calls 

– We want to pass memory spaces into libraries 

 

Among others… 
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MEMORY ADDRESS SPACES ARE NOT COMPOSABLE 

void foo(global int *) 

{ 

   … 

} 

 

void bar(global int * x) 

{ 

      foo(x); // works fine 

 

      local int a[1]; 

      a[0] = *x; 

      foo(a);  // will now not work 

} 
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BARRIER ELISION IS NOT COMPOSABLE 

Parallel prefix sum (in this case taken from a RadixSort) 

 

for level = 0 to n 

 foreach work item i in buffer range 

    if( i > 2^level ) 

      temp = buffer[i-2^(n-1)] + buffer[i]; 

      barrier();  // barrier is not needed within a wavefront or warp 

                      // adds overhead so often dropped for optimization reasons 

      buffer[i] = temp; 
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CHANNELS - PERSISTENT CONTROL PROCESSOR THREADING MODEL  

Add data-flow support to GPGPU 

 

We are not primarily notating this as producer/consumer kernel bodies 

– That is that we are not promoting a method where one kernel loops producing values and another 

loops to consume them 

– That has the negative behavior of promoting long-running kernels 

– We’ve tried to avoid this elsewhere by basing in-kernel launches around continuations rather than 

waiting on children 

 

 Instead we assume that kernel entities produce/consume but consumer work-items are launched on-

demand 

 

An alternative to the point to point data flow using of persistent threads, avoiding the uber-kernel 
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OPERATIONAL FLOW 
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PERSISTENT CONTROL PROCESSOR THREADING MODEL  
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CHANNEL EXAMPLE 

std::function<bool (opp::Channel<int>*)> predicate =  

    [] (opp::Channel<int>* c) -> bool __device(fql) {  

    return c->size() % PACKET_SIZE == 0;  

}; 

 

opp::Channel<int> b(N); 

       

b.executeWith( 

    predicate,  

    opp::Range<1>(CHANNEL_SIZE),  

    [&sumB] (opp::Index<1>) __device(opp) { 

        sumB++; 

    }); 

 

opp::Channel<int> c(N); 

       

c.executeWith( 

    predicate,  

    opp::Range<1>(CHANNEL_SIZE),  

    [&sumC] (opp::Index<1>, const int v) __device(opp) { 

        sumC += v; 

    }); 

 

opp::parallelFor( 

    opp::Range<1>(N), 

    [a, &b, &c] (opp::Index<1> index) __device(opp) { 

        unsigned int n = *(a+index.getX()); 

        if (n > 5) { 

            b.write(n); 

        } 

        else { 

            c.write(n); 

        } 

    }); 
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MAKING BARRIERS FIRST CLASS 

We looked at two approaches to solving the barrier composibility problem: 

– Implicit barriers, simply extend the current barrier 

 Problem with this approach is it has surprisingly limited application, for example think a set of waves producing data 

for another set of waves within the same wavefront. It is not possible to express this relationship in a way that allows 

the producer to progress for multiple clients and multiple data sets. 

– Barrier objects, introduce barriers as first class values with a set of well define operations: 

 Construction – initialize a barrier for some sub-set of work-items within a work-group or across work-groups 

 Arrive –  work-item marks the barrier as satisfied 

 Skip – work-item marks the barrier as satisfied and note that it will no longer take part in barrier operations. Allows 

early exit from a loop or divergent control where work-item never intends to hit take part in barrier 

 Wait – work-item marks the barrier as satisfied and waits for all other work-items to arrive, wait, or skip. 
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BARRIER OBJECT EXAMPLE – SIMPLE DIVERGENT CONTROL FLOW 

barrier b(8); 

parallelFor(Range<1>(8), [&b] (Index<1> i) { 

    int val = i.getX(); 

    scratch[i] = val; 

    if( i < 4 ) { 

       b.wait(); 

       x[i] = scratch[i+1];  

    } else { 

      b.skip(); 

      x[i] = 17; 

    }}); 
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BARRIER OBJECT EXAMPLE – LOOP FLOW 

barrier b(8); 

parallelFor(Range<1>(8)  [&b] (Index<1> i) { 

   scratch[i.getX()] = i.getX(); 

   if( i.getX() < 4 ) { 

      for( int j = 0; j < i; ++j ) { 

         b.wait(); 

         x[i] += scratch[i+1];  

      } 

      b.skip(); 

   } else { 

      b.skip(); 

      x[i.getX()] = 17; 

   }}); 
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BARRIER OBJECT EXAMPLE – CALLING A FUNCTION FROM WITHIN CONTROL FLOW 

barrier b(8); 

parallelFor(Range<1>(8), [&b] (Index<1> i) { 

   scratch[i] = i.getX(); 

   if( i.getX() < 4 ) { 

      someOpaqueLibraryFunction(i.getX(), b); 

   } else { 

      b.skip(); 

      x[i.getX()] = 17; 

   }}); 

void someOpaqueLibraryFunction( 

   const int i, barrier &b) 

{ 

   for( int j = 0; j < i; ++j ) { 

      b.wait(); 

      x[i] += scratch[i+1];  

    } 

    b.skip(); 

} 
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TO SUMMARIZE 

Architectures 

– Current CPU and GPU architectures and how they differ 

– How AMD is trying to improve the architectures to make programming easier and more flexible 

 

Programming models 

– The present state of the art for heterogeneous/GPU programming 

– Collaborative efforts to improve the models we use to develop for them 

– Future programming model enhancements to address the composition problem 
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QUESTIONS 
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Disclaimer & Attribution 
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions 

and typographical errors. 

 

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited 

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product 

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no 

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to 

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes. 
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INFORMATION. 
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