
MAKING GPGPU EASIER
Software and hardware improvements in GPU

computing

Lee Howes

AMD Heterogeneous System Software

2 | UT Austin | March 1, 2012 | Public

WE HEAR A LOT OF

AMD’s GPUs are hard to program

OpenCL requires a lot of boiler plate code not needed by other compute models:

– CUDA, clearly

– pragma models… but do we really want to take that route?

3 | UT Austin | March 1, 2012 | Public

SO IN THIS TALK

Will introduce:

– AMD’s latest generation GPU that makes GPGPU programming a whole lot simpler and faster

– The HSA architecture that extends this simpler model across the platform

– OpenCL C++ a simpler programming model for GPGPU programming

– And some thoughts about how we’re trying to improve this in the future

4 | UT Austin | March 1, 2012 | Public

A NEW ERA OF PROCESSOR PERFORMANCE

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:

 Moore’s Law

 Voltage

Scaling

Constrained by:

Power

Complexity

Single-Core Era

5 | UT Austin | March 1, 2012 | Public

A NEW ERA OF PROCESSOR PERFORMANCE

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:

 Moore’s Law

 Voltage

Scaling

Constrained by:

Power

Complexity

Single-Core Era

T
h
ro

u
g
h
p
u
t

P
e
rf

o
rm

a
n
c
e

Time (# of processors)

we are

here

Enabled by:

 Moore’s Law

 SMP

architecture

Constrained by:

Power

Parallel SW

Scalability

Multi-Core Era

6 | UT Austin | March 1, 2012 | Public

A NEW ERA OF PROCESSOR PERFORMANCE

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:

 Moore’s Law

 Voltage

Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d
e
rn

 A
p
p
lic

a
ti
o
n

P
e
rf

o
rm

a
n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:

 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:

Programming

models

Comm.overhead

T
h
ro

u
g
h
p
u
t

P
e
rf

o
rm

a
n
c
e

Time (# of processors)

we are

here

Enabled by:

 Moore’s Law

 SMP

architecture

Constrained by:

Power

Parallel SW

Scalability

Multi-Core Era

7 | UT Austin | March 1, 2012 | Public

A NEW ERA OF PROCESSOR PERFORMANCE

?

S
in

g
le

-t
h
re

a
d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:

 Moore’s Law

 Voltage

Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d
e
rn

 A
p
p
lic

a
ti
o
n

P
e
rf

o
rm

a
n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:

 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:

Programming

models

Comm.overhead

T
h
ro

u
g
h
p
u
t

P
e
rf

o
rm

a
n
c
e

Time (# of processors)

we are

here

Enabled by:

 Moore’s Law

 SMP

architecture

Constrained by:

Power

Parallel SW

Scalability

Multi-Core Era

Assembly C/C++ Java … pthreads OpenMP / TBB … Shader CUDA OpenCL !!!

8 | UT Austin | March 1, 2012 | Public

GPUS AND CPUS
DESIGNING TO SOLVE A GIVEN PROBLEM

9 | UT Austin | March 1, 2012 | Public

TAKING A REALISTIC LOOK AT GPU COMPUTING

GPUs are not magic

– We’ve often heard about 100x performance improvements

– These are usually the result of poor CPU code

10 | UT Austin | March 1, 2012 | Public

TAKING A REALISTIC LOOK AT GPU COMPUTING

GPUs are not magic

– We’ve often heard about 100x performance improvements

– These are usually the result of poor CPU code

Usually?

– Hmm…

Some people talk about thousands of threads and cores, too…

– Marketing and reality are rarely the same

11 | UT Austin | March 1, 2012 | Public

CPUS AND GPUS

Different design goals:

– CPU design is based on maximizing performance of a single thread

– GPU design aims to maximize throughput at the cost of lower performance for each thread

CPU use of area:

– Transistors are dedicated to branch prediction, out of order logic and caching to reduce latency to

memory , to allow efficient instruction prefetching and deep pipelines (fast clocks)

GPU use of area:

– Transistors concentrated on ALUs and registers

– Registers store thread state and allow fast switching between threads to cover (rather than reduce)

latency

12 | UT Austin | March 1, 2012 | Public

REDUCING LATENCY ON THE CPU

Out of order execution to cover instruction latency (and increase parallelism)

Caches to reduce time to memory

Stall

SIMD Operation
Instruction 0

Instruction 1

Stall

Lanes 0-3

Cac

he

Memory

13 | UT Austin | March 1, 2012 | Public

MAINTAINING THROUGHPUT ON THE GPU

GPUs also have caches

– The goal is generally to improve spatial locality rather than temporal

Multi-cycle a wide vector thread

– Reduce instruction decode overhead, cover instruction latency

Run multiple threads concurrently, interleaving to cover latency

Cache Memory

Wave 2 instruction 0

Wave 1 instruction 0

14 | UT Austin | March 1, 2012 | Public

COSTS

The CPU approach:

– Requires large caches

– Dedicates transistors to out-of-order control

The GPU approach:

– Requires wide hardware vectors, not all code is easily vectorized

– Requires considerable state storage to support active threads

– Note: we need not pretend that OpenCL or CUDA are NOT vectorization

 The entire point of the design is hand vectorization

These two approaches suit different algorithm designs

Instruction decode

Register state

ALUs

15 | UT Austin | March 1, 2012 | Public

THINKING ABOUT

PROGRAMMING

16 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

17 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

18 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)

19 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)

– Iterate to produce a sum in each block

float sum(0)

for(i = n to n + b)

 sum += input[i]

20 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)

– Iterate to produce a sum in each block

– Reduce across threads

float sum(0)

for(i = n to n + b)

 sum += input[i]

float reductionValue(0)

for(t in threadCount)

 reductionValue += t.sum

21 | UT Austin | March 1, 2012 | Public

THE CPU PROGRAMMATICALLY: A TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a CPU?

– Take an input array

– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)

– Iterate to produce a sum in each block

– Reduce across threads

– Vectorize

float reductionValue(0)

for(t in threadCount)

 reductionValue += t.sum

float4 sum(0, 0, 0, 0)

for(i = n/4 to (n + b)/4)

 sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w

22 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

23 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

24 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

25 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

– Iterate to produce a sum in each block

float sum(0)

for(i = n to n + b)

 sum += input[i]

26 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

– Iterate to produce a sum in each block

– Reduce across threads

float sum(0)

for(i = n to n + b)

 sum += input[i]

float reductionValue(0)

for(t in threadCount)

 reductionValue += t.sum

27 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

– Iterate to produce a sum in each block

– Reduce across threads

– Vectorize (this bit may involve a different kernel dispatch given current models)

float reductionValue(0)

for(t in threadCount)

 reductionValue += t.sum

float64 sum(0, …, 0)

for(i = n/64 to (n + b)/64)

 sum += input[i]

float scalarSum = waveReduce(sum)

28 | UT Austin | March 1, 2012 | Public

THE GPU PROGRAMMATICALLY: THE SAME TRIVIAL EXAMPLE

What’s the fastest way to perform an associative reduction across an array on a GPU?

– Take an input array

– Block it based on the number of threads (8 or so per core, usually, up to 24 cores)

– Iterate to produce a sum in each block

– Reduce across threads

– Vectorize (this bit may involve a different kernel dispatch given current models)

float reductionValue(0)

for(t in threadCount)

 reductionValue += t.sum

float64 sum(0, …, 0)

for(i = n/64 to (n + b)/64)

 sum += input[i]

float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars

ALUs, apparently though not really independent, with varying degree of

hardware assistance (and hence overhead):

float sum(0)

for(i = n/64 to (n + b)/64; i += 64)

 sum += input[i]

float scalarSum = waveReduceViaLocalMemory(sum)

29 | UT Austin | March 1, 2012 | Public

THEY DON’T SEEM SO DIFFERENT!

More blocks of data

– More cores

– More threads

Wider threads

– 64 on high end AMD GPUs

– 4/8 on current CPUs

Hard to develop efficiently for wide threads

 Lots of state, makes context switching and stacks

problematic

float64 sum(0, …, 0)

for(i = n/64 to (n + b)/64)

 sum += input[i]

float scalarSum = waveReduce(sum)

float4 sum(0, 0, 0, 0)

for(i = n/4 to (n + b)/4)

 sum += input[i]

float scalarSum = sum.x + sum.y + sum.z + sum.w

30 | UT Austin | March 1, 2012 | Public

THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On GPU cores:

– We need a lot of data parallelism

– Algorithms that can be mapped to multiple cores and multiple threads per core

– Approaches that map efficiently to wide SIMD units

– So a nice simple functional “map” operation is great!

This is basically the OpenCLtm model

Array

O

p

O

p

O

p …

Array.map(Op)

31 | UT Austin | March 1, 2012 | Public

THAT WAS TRIVIAL… MORE GENERALLY, WHAT WORKS WELL?

On CPU cores:

– Some data parallelism for multiple cores

– Narrow SIMD units simplify the problem: pixels work fine rather than data-parallel pixel clusters

 Does AVX change this?

– High clock rates and caches make serial execution efficient

– So in addition to the simple map (which boils down to a for loop on the CPU) we can do complex task

graphs

O

p

O

p

O

p

O

p

O

p

O

p

32 | UT Austin | March 1, 2012 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…

…

…

…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…

…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from
closer coupling between

CPU & GPU

33 | UT Austin | March 1, 2012 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…

…

…

…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…

…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from
closer coupling between

CPU & GPU

Discrete GPU configurations suffer from

communication latency.

Nested data parallel/braided parallel code

benefits from close coupling.

Discrete GPUs don’t provide it well.

But each individual core isn’t great at certain

types of algorithm…

34 | UT Austin | March 1, 2012 | Public

CUE APU

Tight integration of narrow and wide vector kernels

Combination of high and low degrees of threading

Fast turnaround

– Negligible kernel launch time

– Communication between kernels

– Shared buffers

For example:

– Generating a tree structure on the CPU cores, processing the scene on the GPU cores

– Mixed scale particle simulations (see a later talk)

CPU

kernel

GPU

kernel

Data

35 | UT Austin | March 1, 2012 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…

…

…

…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…

…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from
closer coupling between

CPU & GPU

36 | UT Austin | March 1, 2012 | Public

SO TO SUMMARIZE THAT

i=0
i++

load x(i)
fmul
store

cmp i (1000000)
bc

…

…

…

…

i,j=0
i++
j++

load x(i,j)
fmul
store

cmp j (100000)
bc

cmp i (100000)
bc

2D array
representing
very large

dataset

Loop 1M
times for
1M pieces

of data

Coarse-grain data
parallel Code

Maps very well to
Throughput-oriented
data parallel engines

i=0
i++

load x(i)
fmul
store

cmp i (16)
bc

…

…

Loop 16 times for 16
pieces of data

Fine-grain data
parallel Code

Maps very well to
integrated SIMD

dataflow (ie: SSE)

Nested data
parallel Code

Lots of conditional data
parallelism. Benefits from
closer coupling between

CPU & GPU

37 | UT Austin | March 1, 2012 | Public

HOW DO WE USE THESE DEVICES?

Heterogeneous programming isn’t easy

– Particularly if you want performance

To date:

– CPUs with visible vector ISAs

– GPUs mostly lane-wise (implicit vector) ISAs

– Clunky separate programming models with explicit data movement

How can we target both?

– With a fair degree of efficiency

– True shared memory with passable pointers

 Let’s talk about programming models…

38 | UT Austin | March 1, 2012 | Public

THE STATE OF THE ART
GPU PROGRAMMING MODELS IN THE PRESENT

39 | UT Austin | March 1, 2012 | Public

TODAY’S EXECUTION MODEL

Single program multiple data (SPMD)

– Same kernel runs on:

All compute units

All processing elements

– Purely “data parallel” mode

– Device model:

Device runs a single kernel simultaneously

Separation between compute units is relevant for memory model only.

40 | UT Austin | March 1, 2012 | Public

TODAY’S EXECUTION MODEL

Single program multiple data (SPMD)

– Same kernel runs on:

All compute units

All processing elements

– Purely “data parallel” mode

– Device model:

Device runs a single kernel simultaneously

Separation between compute units is relevant for memory model only.

…

…

…

WG

WI

WI WI

WI …

41 | UT Austin | March 1, 2012 | Public

TODAY’S EXECUTION MODEL

Single program multiple data (SPMD)

– Same kernel runs on:

All compute units

All processing elements

– Purely “data parallel” mode

– Device model:

Device runs a single kernel simultaneously

Separation between compute units is relevant for memory model only.

Modern CPUs & GPUs can support more !

…

…

…

WG

WI

WI WI

WI …

42 | UT Austin | March 1, 2012 | Public

MODERN GPU (& CPU) CAPABILITIES

Modern GPUs can execute a different instruction stream per core

– Some even have a few HW threads per core (each runs separated streams)

This is still a highly parallelized machine!

– HW thread executes N-wide vector instructions (8-64 wide)

– Scheduler switches HW threads on the fly to hide memory misses

43 | UT Austin | March 1, 2012 | Public

MODERN GPU (& CPU) CAPABILITIES

Modern GPUs can execute a different instruction stream per core

– Some even have a few HW threads per core (each runs separated streams)

This is still a highly parallelized machine!

– HW thread executes N-wide vector instructions (8-64 wide)

– Scheduler switches HW threads on the fly to hide memory misses

Shader Core Shader Core Shader Core Shader Core
Input

Assembler
Rasterizer

Output
blending

Input
Assembly

Vertex
Shader

Geometry
Assembly

Geometry
Assembler

Rasterization

Pixel
Shader

Pixel
Shader

Pixel
ShaderPixel

Shader

Blend

Blend

Blend

Blend

Time

44 | UT Austin | March 1, 2012 | Public

PERSISTENT THREADS

People emulate more flexible MPMD models using “persistent

threads”

– Each core executes a scheduler loop

– Takes tasks off a queue

– Branches to particular code for that task

This bypasses the hardware scheduler

– Gives flexibility without necessary significant overhead

– Reduces the ability of the hardware to flexibly schedule for

power reduction in the absence of context switching

– The more cores we add the worse this is

GPU

Core

Task A

Task B

Task C

A

Queue

C

A

45 | UT Austin | March 1, 2012 | Public

PERSISTENT THREADS

People emulate more flexible MPMD models using “persistent

threads”

– Each core executes a scheduler loop

– Takes tasks off a queue

– Branches to particular code for that task

This bypasses the hardware scheduler

– Gives flexibility without necessary significant overhead

– Reduces the ability of the hardware to flexibly schedule for

power reduction in the absence of context switching

– The more cores we add the worse this is

GPU

Core

Task A

Task B

Task C

Queue

A

C

A

46 | UT Austin | March 1, 2012 | Public

PERSISTENT THREADS

People emulate more flexible MPMD models using “persistent

threads”

– Each core executes a scheduler loop

– Takes tasks off a queue

– Branches to particular code for that task

This bypasses the hardware scheduler

– Gives flexibility without necessary significant overhead

– Reduces the ability of the hardware to flexibly schedule for

power reduction in the absence of context switching

– The more cores we add the worse this is

GPU

Core

Task A

Task B

Task C

Queue

C

A

47 | UT Austin | March 1, 2012 | Public

OPENCL, CUDA, C++AMP, ARE THESE GOOD MODELS?

Designed for wide data-parallel computation

– Pretty low level

– There is a lack of good scheduling and coherence control

– We see “cheating” all the time: the lane-wise programming model only becomes efficient when we

program it like the vector model it really is, making assumptions about wave or warp synchronicity

However: they’re better than SSE!

– We have proper scatter/gather memory access

– The lane wise programming does help: we still have to think about vectors, but it’s much easier to do

than in a vector language

– We can even program lazily and pretend that a single work item is a thread and yet it still (sortof) works

48 | UT Austin | March 1, 2012 | Public

THE WORLD IS CHANGING, SLOWLY

These models are not static

– Obviously there are serious downsides to that…

OpenCL 1.2 was recently released, 2.0 is in development and making good progress

NVIDIA has been adding features to CUDA with some persistence

49 | UT Austin | March 1, 2012 | Public

C++AMP

Microsoft has decided on a single source model called C++AMP

– Sits on top of DirectX

– Highly limited as a result of this (some way behind CUDA and OpenCL currently)

– However, from an ease of access point of view there are clear benefits

For example:

void ampSquareExample(const std::vector<int> &in, std::vector<int> &out) {

 concurrency::array_view<const int> avIn(in.size(), in);

 concurrency::array_view<int> avOut(out.size(), out);

 concurrency::parallel_for_each(avOut.extent, [=](concurrency::index<1> idx) restrict(amp) {

 avOut[idx] = avIn[idx] * avIn[idx];

 });

 avOut.synchronize();

}

50 | UT Austin | March 1, 2012 | Public

OPENACC

 Looking at it from the OpenMP pragma directive angle we see OpenACC

– Initially developed by PGI, NVIDIA, Cray and CAPS

Clear benefits for developers starting with C or fortran source

– Though it’s a shame to not be integrated cleanly with the language and type system

The aim is to merge this technology with OpenMP and, quoting from the OpenACC web site:

– The intent is that the lessons learned from use an implementations of the OpenACC API will lead to a

more complete and robust OpenMP heterogeneous computing standard…

#pragma acc parallel…

51 | UT Austin | March 1, 2012 | Public

HOW DO WE MOVE FORWARD?

We should concentrate on ways to abstract the algorithms over the features that differ?

– A difficult challenge

– For now we seem to be stuck with inefficient raw-data-parallelism or expertly coded SIMD algorithms

First of all let’s look at making the architecture more flexible

– From there we can more flexibly think about programming models

– We become less restricted

52 | UT Austin | March 1, 2012 | Public

IMPROVING THE GPU’S

PROGRAMMABILITY
THE HD7970 AND GRAPHICS CORE NEXT

53 | UT Austin | March 1, 2012 | Public

GPU EXECUTION AS WAS

We often view GPU programming as a set of independent threads, more reasonably known as “work
items” in OpenCL:

kernel void blah(global float *input, global float *output) {

 output[get_global_id(0)] = input[get_global_id(0)];

}

Which we flatten to an intermediate language known as AMD IL:

Note that AMD IL contains short vector instructions

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

54 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

55 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

56 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

– Each half of the device has a wave scheduler

 This can be seen as a shared, massively threaded, scalar core

57 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

– Each half of the device has a wave scheduler

 This can be seen as a shared, massively threaded, scalar core

The device as a whole can run up to about 500 threads

58 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

– Each half of the device has a wave scheduler

 This can be seen as a shared, massively threaded, scalar core

The device as a whole can run up to about 500 threads

– 500 program counters across the two schedulers

59 | UT Austin | March 1, 2012 | Public

MULTIPLE CORES

We can run that IL across multiple cores in the GPU:

– The HD6970 architecture has 24 vector cores

– Each half of the device has a wave scheduler

 This can be seen as a shared, massively threaded, scalar core

The device as a whole can run up to about 500 threads

– 500 program counters across the two schedulers

– The device can execute around 32000 work items concurrently

60 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector

61 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

62 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

63 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

64 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

65 | UT Austin | March 1, 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

66 | UT Austin | March 1, 2012 | Public

IT WAS NEVER QUITE THAT SIMPLE

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines

– Data-parallel through hardware vectorization

– Instruction parallel through both multiple cores and VLIW units

The HD6970 issued a 4-way VLIW instruction per work item

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions

67 | UT Austin | March 1, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

68 | UT Austin | March 1, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause header
Work executed by the

shared scalar unit

69 | UT Austin | March 1, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

70 | UT Austin | March 1, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

VLIW instruction packet
Compiler-generated instruction level

parallelism for the VLIW unit.

Each instruction (x, y, z, w) executed

across the vector.

71 | UT Austin | March 1, 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

VLIW instruction packet
Compiler-generated instruction level

parallelism for the VLIW unit.

Each instruction (x, y, z, w) executed

across the vector.

Notice the poor occupancy of VLIW slots

72 | UT Austin | March 1, 2012 | Public

WHY DID WE SEE INEFFICIENCY?

The architecture was well suited to graphics workloads:

– VLIW was easily filled by the vector-heavy graphics kernels

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient

Unfortunately, workloads change with time.

So how did we change the architecture to improve the situation?

73 | UT Austin | March 1, 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

74 | UT Austin | March 1, 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

75 | UT Austin | March 1, 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

76 | UT Austin | March 1, 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

77 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed

globally

78 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed

globally

79 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

80 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

Then let us consider the VLIW ALUs

81 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

82 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

– A VLIW cluster of vector units

83 | UT Austin | March 1, 2012 | Public

THE SIMD CORE

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the

compiler

No VLIW!

The heart of Graphics Core Next:

– A scalar processor with four 16-wide vector units

– Each lane of the vector, and hence each IL work item, is now scalar

84 | UT Austin | March 1, 2012 | Public

The scalar core manages a large number of threads

– Each thread requires its set of vector registers

– Significant register state for both scalar and vector storage

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the

HD7970

THE SIMD CORE

85 | UT Austin | March 1, 2012 | Public

The scalar core manages a large number of threads

– Each thread requires its set of vector registers

– Significant register state for both scalar and vector storage

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the

HD7970

THE SIMD CORE

86 | UT Austin | March 1, 2012 | Public

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

THE NEW ISA

Simpler and more efficient

 Instructions for both sets of execution units inline

87 | UT Austin | March 1, 2012 | Public

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

THE NEW ISA

Simpler and more efficient

 Instructions for both sets of execution units inline

88 | UT Austin | March 1, 2012 | Public

s_buffer_load_dword s0, s[4:7], 0x04

s_buffer_load_dword s1, s[4:7], 0x18

s_buffer_load_dword s4, s[8:11], 0x00

s_waitcnt lgkmcnt(0)

s_mul_i32 s0, s12, s0

s_add_i32 s0, s0, s1

v_add_i32 v0, vcc, s0, v0

v_lshlrev_b32 v0, 2, v0

v_add_i32 v1, vcc, s4, v0

s_load_dwordx4 s[4:7], s[2:3], 0x50

s_waitcnt lgkmcnt(0)

tbuffer_load_format_x v1, v1, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_buffer_load_dword s0, s[8:11], 0x04

s_load_dwordx4 s[4:7], s[2:3], 0x58

s_waitcnt lgkmcnt(0)

v_add_i32 v0, vcc, s0, v0

s_waitcnt vmcnt(0)

tbuffer_store_format_x v1, v0, s[4:7],

 0 offen format:[BUF_DATA_FORMAT_32,BUF_NUM_FORMAT_FLOAT]

s_endpgm

THE NEW ISA

Simpler and more efficient

 Instructions for both sets of execution units inline

No clauses

– Lower instruction scheduling latency

– Improved performance in previously clause-

bound cases

– Lower power handling of control flow as

control is closer

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls and

recusion

89 | UT Austin | March 1, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

90 | UT Austin | March 1, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

91 | UT Austin | March 1, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

92 | UT Austin | March 1, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

93 | UT Austin | March 1, 2012 | Public

BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Optional:

Use based on the number of

instruction in conditional section.

 Executed in branch unit

94 | UT Austin | March 1, 2012 | Public

IMPROVING SYSTEM

PROGRAMMABILITY
THE HETEROGENEOUS SYSTEM ARCHITECTURE

95 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

96 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU

and GPU

GPU Compute C++

support

User mode schedulng

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

97 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU

and GPU

GPU Compute C++

support

User mode schedulng

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

98 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE

System

Integration

GPU compute

context switch

GPU graphics

pre-emption

Quality of Service

Extend to

Discrete GPU

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU

and GPU

GPU Compute C++

support

User mode schedulng

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common

Manufacturing

Technology

99 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM

Open Architecture, published specifications

– HSAIL virtual ISA

– HSA memory model

– HSA dispatch

 ISA agnostic for both CPU and GPU

100 | UT Austin | March 1, 2012 | Public

HSA INTERMEDIATE LAYER - HSAIL

HSAIL is a virtual ISA for parallel programs

– Finalized to ISA by a JIT compiler or “Finalizer”

Explicitly parallel

– Designed for data parallel programming

Support for exceptions, virtual functions,

and other high level language features

Syscall methods

– GPU code can call directly to system services, IO, printf, etc

Debugging support

101 | UT Austin | March 1, 2012 | Public

HSA MEMORY MODEL

Designed to be compatible with C++11, Java and .NET Memory Models

Relaxed consistency memory model for parallel compute performance

 Loads and stores can be re-ordered by the finalizer

Visibility controlled by:

– Load.Acquire*, Load.Dep, Store.Release*

– Barriers

*sequential consistent ordering

102 | UT Austin | March 1, 2012 | Public

HSA ENABLES TASK QUEUING RUNTIMES

Popular pattern for task- and data-parallel programming on SMP systems today

Characterized by:

– A work queue per core

– Runtime library that divides large loops into tasks and distributes to queues

– A work stealing runtime that keeps the system balanced

HSA is designed to extend this pattern to run on heterogeneous systems

103 | UT Austin | March 1, 2012 | Public

TASK QUEUING RUNTIME ON CPUS

CPU Threads GPU Threads Memory

Work Stealing Runtime

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

x86 CPU x86 CPU x86 CPU x86 CPU

104 | UT Austin | March 1, 2012 | Public

TASK QUEUING RUNTIME ON THE FSA PLATFORM

CPU Threads GPU Threads Memory

Work Stealing Runtime

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

GPU

Manager

Q

X86 CPU X86 CPU X86 CPU X86 CPU Radeon™ GPU

105 | UT Austin | March 1, 2012 | Public

TASK QUEUING RUNTIME ON THE FSA PLATFORM

Memory

S
I

M
D

S
I

M
D

S
I

M
D

S
I

M
D

S
I

M
D

Work Stealing Runtime

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

CPU

Worker

Q

GPU

Manager

Q

Fetch and Dispatch

X86 CPU X86 CPU X86 CPU X86 CPU

CPU Threads GPU Threads Memory

106 | UT Austin | March 1, 2012 | Public

HETEROGENEOUS COMPUTE DISPATCH

How compute dispatch operates

today in the driver model

How compute dispatch

improves tomorrow under HSA

107 | UT Austin | March 1, 2012 | Public

TODAY’S COMMAND AND DISPATCH FLOW

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A GPU

HARDWARE

108 | UT Austin | March 1, 2012 | Public

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Hardware

Queue

A

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

GPU

HARDWARE

109 | UT Austin | March 1, 2012 | Public

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A

C

B
A B

GPU

HARDWARE

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

110 | UT Austin | March 1, 2012 | Public

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

111 | UT Austin | March 1, 2012 | Public

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No APIs (required)

 No soft queues

 No user mode drivers

 No kernel mode transitions

 Far less overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

112 | UT Austin | March 1, 2012 | Public

B to CPU1 (do not delete – part of animation)

CPU1 to B (do not delete – part of animation)

C to CPU2 (do not delete – part of animation)

A to CPU1 (do not delete – part of animation)

App to C (do not delete – part of animation)

App to A (do not delete – part of animation)

Application / Runtime

FUTURE COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

Click 3 and 4

113 | UT Austin | March 1, 2012 | Public

GPU to D

D to CPU2 G to GPU

GPU to G

Click 6

CPU2 to F

F to GPU

App to E

E to GPU

B to CPU1

CPU1 to B

C to CPU2

A to CPU1

App to C

App to A

Application / Runtime

FUTURE COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

Click 4

Click 5 Click 7 Click 8 Click 9

loop 1

Click 9

loop 2

Click 9

loop 3

114 | UT Austin | March 1, 2012 | Public

IMPROVING THE

PROGRAMMING MODEL
Baby steps… the host API and kernel language

115 | UT Austin | March 1, 2012 | Public

VECTOR ADDITION - HOST PROGRAM
// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY, sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL);

116 | UT Austin | March 1, 2012 | Public

VECTOR ADDITION - HOST PROGRAM
// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL,
 NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

117 | UT Austin | March 1, 2012 | Public

VECTOR ADDITION - HOST PROGRAM
// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL,
NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,

 NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,

 sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1, &program_source, NULL,
NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL,
NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

 sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

 sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,
NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,
0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

118 | UT Austin | March 1, 2012 | Public

HERE'S THE SAME PROGRAM IN CUDA

int main(int argc, char** argv) {

 int N = 50000;

 size_t size = N * sizeof(float);

h_A = (float*)malloc(size);

h_B = (float*)malloc(size);

h_C = (float*)malloc(size);

RandomInit(h_A, N);

RandomInit(h_B, N);

cudaMalloc((void**)&d_A, size);

cudaMalloc((void**)&d_B, size);

cudaMalloc((void**)&d_C, size);

cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice) ;

cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

int blocksPerGrid = (N + 256 - 1) / 256;

vecAdd<<<blocksPerGrid, 256>>>(d_A, d_B, d_C, N);

cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost) ;

119 | UT Austin | March 1, 2012 | Public

CUDA EXAMPLE

Clearly simpler than the OpenCL API code!

– However, still a based C API that is not type safe!

– Requires a non-standard host compiler, not just a device compiler!

Can we not do something different?

120 | UT Austin | March 1, 2012 | Public

CUDA EXAMPLE

Clearly simpler than the OpenCL API code!

– However, still a based C API that is not type safe!

– Requires a non-standard host compiler, not just a device compiler!

Can we not do something different?

 In the words of my colleague:

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!”

121 | UT Austin | March 1, 2012 | Public

CUDA EXAMPLE

Clearly simpler than the OpenCL API code!

– However, still a based C API that is not type safe!

– Requires a non-standard host compiler, not just a device compiler!

Can we not do something different?

 In the words of my colleague:

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!”

 In the context, I think he has a point…

122 | UT Austin | March 1, 2012 | Public

CUDA EXAMPLE

Clearly simpler than the OpenCL API code!

– However, still a based C API that is not type safe!

– Requires a non-standard host compiler, not just a device compiler!

Can we not do something different?

 In the words of my colleague:

– “Don’t use C it is a STUPID language, designed in the dark ages of computing!”

 In the context, I think he has a point…

So how about C++?

123 | UT Austin | March 1, 2012 | Public

THE C++ INTERFACE

Khronos has defined a common C++ header file containing a high level interface to OpenCL.

Key features:

– Uses common defaults for the platform and command-queue … saving the programmer from extra

coding for the most common use cases.

– Simplifies basic API by bundling key parameters with the objects rather than verbose and repetitive

argument lists.

– Reference counting

– Kernel functors

– Statically checked information routines

124 | UT Austin | March 1, 2012 | Public

C++ KERNELS

OpenCL C++ Kernel language

– Develop device code using full C++

– Extending OpenCL address spaces in the C++ type system

 Automatic inference of address spaces, handle this pointer address space deduction

Combine C++ Host API and C++ Kernel language:

– Shared pointer representation, allow support for pointer based data-structures shared between CPU

and GPU

125 | UT Austin | March 1, 2012 | Public

C++ INTERFACE: SETTING UP THE HOST PROGRAM

Single header files … both standard

#include <CL/cl.hpp> // Khronos C++ Wrapper API

Setup the functional interface (used by the C++ OpenCL API)

#include <functional>

Everything defined with single namespace:

using namespace cl;

126 | UT Austin | March 1, 2012 | Public

POINTER AND FUNCTOR EXAMPLE

cl::Pointer<int> x = cl::malloc<int>(N);

for (int i = 0; i < N; i++) { *(x+i)= rand(); }

std::function<Event (const cl::EnqueueArgs&, cl::Pointer<int>) plus =

 make_kernel<cl::Pointer<int>, int>(

 “kernel void plus(global Pointer<int> io)

 {

 int I = get_global_id(0);

 *(io+i) = *(io+i) * 2;

 }”);

plus(EnqueueArgs(NDRange(N)), x);

for(int i = 0; i < N; i++) { cout << *(x+i) << endl; }

127 | UT Austin | March 1, 2012 | Public

POINTER AND FUNCTOR EXAMPLE

cl::Pointer<int> x = cl::malloc<int>(N);

for (int i = 0; i < N; i++) { *(x+i)= rand(); }

std::function<Event (const cl::EnqueueArgs&, cl::Pointer<int>) plus =

 make_kernel<cl::Pointer<int>, int>(

 “kernel void plus(global Pointer<int> io)

 {

 int I = get_global_id(0);

 *(io+i) = *(io+i) * 2;

 }”);

plus(EnqueueArgs(NDRange(N)), x);

for(int i = 0; i < N; i++) { cout << *(x+i) << endl; }

• Defaults - no need to reference

context, command queue.

• Program automatically created

and compiled too.

128 | UT Austin | March 1, 2012 | Public

OPENCL KERNEL LANGUAGE

template<address-space aspace_>

struct Shape {

 int foo(aspace_ Colour&) global + local;

 int foo(aspace_ Colour&) private;

 int bar(void);

};

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

129 | UT Austin | March 1, 2012 | Public

OPENCL KERNEL LANGUAGE

template<address-space aspace_>

struct Shape {

 int foo(aspace_ Colour&) global + local;

 int foo(aspace_ Colour&) private;

 int bar(void);

};

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

• Abstract over address space

qualifiers.

• Methods can be annotated with

address spaces, controls “this”

pointer location. Extended to

overloading.

• Default address space for “this” is

deduced automatically. Support

default constructors.

130 | UT Austin | March 1, 2012 | Public

OPENCL KERNEL LANGUAGE

template<address-space aspace_>

struct Shape {

 int foo(aspace_ Colour&) global + local;

 int foo(aspace_ Colour&) private;

 int bar(void);

};

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

• C+11 features used to handle

cases when type of “this”

needs to be written down by the

developer.

• Abstract over address space

qualifiers.

• Methods can be annotated with

address spaces, controls “this”

pointer location. Extended to

overloading.

• Default address space for “this” is

deduced automatically. Support

default constructors.

131 | UT Austin | March 1, 2012 | Public

IMPROVING THE

PROGRAMMING MODEL
The future: fixing the composition problem

132 | UT Austin | March 1, 2012 | Public

COMPOSABILITY IN CURRENT MODELS

Current GPU programming models suffer from composability limitations

The data-parallel model works in simple cases. Its fixed, limited nature breaks down when:

– We need to use long-running threads to more efficiently perform reductions

– We want to synchronize inside and outside library calls

– We want to pass memory spaces into libraries

Among others…

133 | UT Austin | March 1, 2012 | Public

MEMORY ADDRESS SPACES ARE NOT COMPOSABLE

void foo(global int *)

{

 …

}

void bar(global int * x)

{

 foo(x); // works fine

 local int a[1];

 a[0] = *x;

 foo(a); // will now not work

}

134 | UT Austin | March 1, 2012 | Public

BARRIER ELISION IS NOT COMPOSABLE

Parallel prefix sum (in this case taken from a RadixSort)

for level = 0 to n

 foreach work item i in buffer range

 if(i > 2^level)

 temp = buffer[i-2^(n-1)] + buffer[i];

 barrier(); // barrier is not needed within a wavefront or warp

 // adds overhead so often dropped for optimization reasons

 buffer[i] = temp;

135 | UT Austin | March 1, 2012 | Public

CHANNELS - PERSISTENT CONTROL PROCESSOR THREADING MODEL

Add data-flow support to GPGPU

We are not primarily notating this as producer/consumer kernel bodies

– That is that we are not promoting a method where one kernel loops producing values and another

loops to consume them

– That has the negative behavior of promoting long-running kernels

– We’ve tried to avoid this elsewhere by basing in-kernel launches around continuations rather than

waiting on children

 Instead we assume that kernel entities produce/consume but consumer work-items are launched on-

demand

An alternative to the point to point data flow using of persistent threads, avoiding the uber-kernel

136 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel

137 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel
Queue

Kernel

138 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Queue
B

Kernel Work-items

139 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Queue
B

Kernel Work-items

write

140 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

write

141 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Trigger
Dispatch

142 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

143 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

read

144 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

read

145 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

write

146 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Trigger
Dispatch

147 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

148 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

read

149 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel Work-items

Work-items

read

150 | UT Austin | March 1, 2012 | Public

OPERATIONAL FLOW

CP Uber-scheduler

Channel

Queue
A

Kernel

151 | UT Austin | March 1, 2012 | Public

PERSISTENT CONTROL PROCESSOR THREADING MODEL

...

 L2 CACHE

wi0 win

LDS backed channel

Private
memory

Private
memory

CU0

wi0Kernelj -WFKernelj -WF
win

LDS backed channel

Private
memory

Private
memory

CUm

Kerneli -WFKerneli -WF

Channel0 Channeln

ACE CP
Scheduler0

...

CS
Pipe

CS
Pipe

Global memory

x86 thread x86 thread

CACHE CACHE

...

...

ACE CP
Scheduler1

152 | UT Austin | March 1, 2012 | Public

CHANNEL EXAMPLE

std::function<bool (opp::Channel<int>*)> predicate =

 [] (opp::Channel<int>* c) -> bool __device(fql) {

 return c->size() % PACKET_SIZE == 0;

};

opp::Channel<int> b(N);

b.executeWith(

 predicate,

 opp::Range<1>(CHANNEL_SIZE),

 [&sumB] (opp::Index<1>) __device(opp) {

 sumB++;

 });

opp::Channel<int> c(N);

c.executeWith(

 predicate,

 opp::Range<1>(CHANNEL_SIZE),

 [&sumC] (opp::Index<1>, const int v) __device(opp) {

 sumC += v;

 });

opp::parallelFor(

 opp::Range<1>(N),

 [a, &b, &c] (opp::Index<1> index) __device(opp) {

 unsigned int n = *(a+index.getX());

 if (n > 5) {

 b.write(n);

 }

 else {

 c.write(n);

 }

 });

153 | UT Austin | March 1, 2012 | Public

MAKING BARRIERS FIRST CLASS

We looked at two approaches to solving the barrier composibility problem:

– Implicit barriers, simply extend the current barrier

 Problem with this approach is it has surprisingly limited application, for example think a set of waves producing data

for another set of waves within the same wavefront. It is not possible to express this relationship in a way that allows

the producer to progress for multiple clients and multiple data sets.

– Barrier objects, introduce barriers as first class values with a set of well define operations:

 Construction – initialize a barrier for some sub-set of work-items within a work-group or across work-groups

 Arrive – work-item marks the barrier as satisfied

 Skip – work-item marks the barrier as satisfied and note that it will no longer take part in barrier operations. Allows

early exit from a loop or divergent control where work-item never intends to hit take part in barrier

 Wait – work-item marks the barrier as satisfied and waits for all other work-items to arrive, wait, or skip.

154 | UT Austin | March 1, 2012 | Public

BARRIER OBJECT EXAMPLE – SIMPLE DIVERGENT CONTROL FLOW

barrier b(8);

parallelFor(Range<1>(8), [&b] (Index<1> i) {

 int val = i.getX();

 scratch[i] = val;

 if(i < 4) {

 b.wait();

 x[i] = scratch[i+1];

 } else {

 b.skip();

 x[i] = 17;

 }});

155 | UT Austin | March 1, 2012 | Public

BARRIER OBJECT EXAMPLE – LOOP FLOW

barrier b(8);

parallelFor(Range<1>(8) [&b] (Index<1> i) {

 scratch[i.getX()] = i.getX();

 if(i.getX() < 4) {

 for(int j = 0; j < i; ++j) {

 b.wait();

 x[i] += scratch[i+1];

 }

 b.skip();

 } else {

 b.skip();

 x[i.getX()] = 17;

 }});

156 | UT Austin | March 1, 2012 | Public

BARRIER OBJECT EXAMPLE – CALLING A FUNCTION FROM WITHIN CONTROL FLOW

barrier b(8);

parallelFor(Range<1>(8), [&b] (Index<1> i) {

 scratch[i] = i.getX();

 if(i.getX() < 4) {

 someOpaqueLibraryFunction(i.getX(), b);

 } else {

 b.skip();

 x[i.getX()] = 17;

 }});

void someOpaqueLibraryFunction(

 const int i, barrier &b)

{

 for(int j = 0; j < i; ++j) {

 b.wait();

 x[i] += scratch[i+1];

 }

 b.skip();

}

157 | UT Austin | March 1, 2012 | Public

TO SUMMARIZE

Architectures

– Current CPU and GPU architectures and how they differ

– How AMD is trying to improve the architectures to make programming easier and more flexible

Programming models

– The present state of the art for heterogeneous/GPU programming

– Collaborative efforts to improve the models we use to develop for them

– Future programming model enhancements to address the composition problem

158 | UT Austin | March 1, 2012 | Public

QUESTIONS

159 | UT Austin | March 1, 2012 | Public

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

© 2011 Advanced Micro Devices, Inc.

