

Can gpgpu programming be liberated
from the
data-parallel bottleneck?

Lee Howes
AMD
Member of Technical Staff, Heterogeneous System Software

3| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

realism
Redirecting from mythology

4| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

last year…

 I talked about similarities between GPU and CPU

AMD is pushing this story further
– You saw the launch of the first graphics core next-based GPUs this year
– The HSA devices, software infrastructure and associated specifications are progressing

Today I want to get people thinking about reality
– Get away from the mythology of GPU execution
– Consider how we can streamline programming to make good use of hardware

5| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

First of all: GPU myths

Most people outside of marketing view GPU architecture claims as slightly exaggerated
– It is valid to say that a GPU has hundreds of cores
– It is not valid to compare that definition of “core” with that of an x86 CPU
– As such, if a GPU has hundreds of cores, a CPU does not have 8

The same is true of threads
– We can say that a thread is the programmer visible construct that we see in OpenCL™, CUDA, PTX

and so on
– That does not really mean that a CPU cannot run more than one of those per core or that multiple

“threads” cannot run in a single hardware thread

6| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

First of all: GPU myths

 100x improvements
– We can say that a GPU program gets 100x performance gain over a single threaded CPU

implementation
– We must not say that a GPU is 100x faster than the CPU as a result
– We should not quote numbers in a paper abstract without at least saying what we are trying to prove

So what is the lesson to consider here?
– Define your terms first
– Quote results based on those terms
– Be able to defend what you mean
– Do not fall into the trap of comparing algorithm performance and calling it device performance

7| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Branchy code: a concept to consider

GPUs are bad at executing branchy code
– This is a claim we hear repeatedly
– What does it really mean, and given a definition, is it actually true?

The usual clarification is:
– GPUs are bad at executing divergent branches

 Let me tell you a little story of evolution…

8| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

The SIMD core

The SIMD unit on the AMD Radeon™ HD 6970 architecture (and related designs) had a branch control
but full scalar execution was performed globally

9| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

The SIMD core

On the AMD Radeon™ HD 7970 (and other chips; better known as “Graphics Core Next”) we have a full
scalar processor and the L1 cache and LDS have been doubled in size

Then let us consider the VLIW ALUs

Notice that this already doesn’t seem quite so different from a CPU core with vector units?

10| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

The SIMD core

Remember we could view the architecture two ways:
– An array of VLIW units
– A VLIW cluster of vector units

11| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the
compiler

No VLIW!

The heart of Graphics Core Next:
– A scalar processor with four 16-wide vector units
– Each lane of the vector, and hence each IL work item, is now scalar

The SIMD core

12| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Branching and the new ISA

float fn0(float a,float b)
{

if(a>b)
return((a-b)*a);

else
return((b-a)*b);

}

float fn0(float a,float b)
{

if(a>b)
return((a-b)*a);

else
return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”
 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC
s_mov_b64 s0,exec //Save current exec mask
s_and_b64 exec,vcc,exec //Do “if”
s_cbranch_vccz label0 //Branch if all lanes fail
v_sub_f32 r2,r0,r1 //result = a – b
v_mul_f32 r2,r2,r0 //result=result * a

label0:
s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)
s_cbranch_execz label1 //Branch if all lanes fail
v_sub_f32 r2,r1,r0 //result = b – a
v_mul_f32 r2,r2,r1 //result = result * b

label1:
s_mov_b64 exec,s0 //Restore exec mask

 //Registers r0 contains “a”, r1 contains “b”
 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC
s_mov_b64 s0,exec //Save current exec mask
s_and_b64 exec,vcc,exec //Do “if”
s_cbranch_vccz label0 //Branch if all lanes fail
v_sub_f32 r2,r0,r1 //result = a – b
v_mul_f32 r2,r2,r0 //result=result * a

label0:
s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)
s_cbranch_execz label1 //Branch if all lanes fail
v_sub_f32 r2,r1,r0 //result = b – a
v_mul_f32 r2,r2,r1 //result = result * b

label1:
s_mov_b64 exec,s0 //Restore exec mask

Optional:
Use based on the number of
instruction in conditional section.
 Executed in branch unit

Optional:
Use based on the number of
instruction in conditional section.
 Executed in branch unit

13| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Familiar?

 If we add the frontend of the core…

“Graphics Core Next” core

“Barcelona” core

v_cmp_gt_f32 r0,r1 //a > b, establish VCC
s_mov_b64 s0,exec //Save current mask
s_and_b64 exec,vcc,exec //Do “if”
s_cbranch_vccz label0 //Branch if all fail
v_sub_f32 r2,r0,r1 //result = a – b
v_mul_f32 r2,r2,r0 //result=result * a

v_cmp_gt_f32 r0,r1 //a > b, establish VCC
s_mov_b64 s0,exec //Save current mask
s_and_b64 exec,vcc,exec //Do “if”
s_cbranch_vccz label0 //Branch if all fail
v_sub_f32 r2,r0,r1 //result = a – b
v_mul_f32 r2,r2,r0 //result=result * a

How would an implicitly vectorized program look mapped onto here using SSE
instructions?

So different?

How would an implicitly vectorized program look mapped onto here using SSE
instructions?

So different?

14| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

So returning to the topic of branches

Are GPUs bad at executing branchy code?

Aren’t CPUs just as bad at this?
– Try running a divergent branch on an AVX unit.
– Actually, CPUs are worse at this because they don’t have the same flexibility in their vector units.
– Which is easier to compile a pre-vectorized input like OpenCL to: CPU or GPU?

So, what did we really mean?
– GPUs are bad at executing branchy code IF we assume that the input was mapped in SPMD-on-SIMD

fashion AND we do not assume the same about the CPU
– Somehow that’s less exciting…

 Instead, how SHOULD we be thinking about programming these devices?

15| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

The CPU programmatically: a trivial example

What’s the fastest way to perform an associative reduction across an array on a CPU?
– Take an input array
– Block it based on the number of threads (one per core usually, maybe 4 or 8 cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize

float sum(0)
for(i = n to n + b)
 sum += input[i]

float reductionValue(0)
for(t in threadCount)
 reductionValue += t.sum

float4 sum(0, 0, 0, 0)
for(i = n/4 to (n + b)/4)
 sum += input[i]
float scalarSum = sum.x + sum.y + sum.z + sum.w

16| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

The GPU programmatically: The same trivial example

What’s the fastest way to perform an associative reduction across an array on a GPU?
– Take an input array
– Block it based on the number of threads (8 or so per core up to 32 or so cores)
– Iterate to produce a sum in each block
– Reduce across threads
– Vectorize (this bit may be a different kernel dispatch given current models)

float sum(0)
for(i = n to n + b)
 sum += input[i]

float reductionValue(0)
for(t in threadCount)
 reductionValue += t.sum

float64 sum(0, …, 0)
for(i = n/64 to (n + b)/64)
 sum += input[i]
float scalarSum = waveReduce(sum)

Current models ease programming by viewing the vector as a set of scalars
ALUs, apparently though not really independent, with varying degree of
hardware assistance (and hence overhead):
float sum(0)
for(i = n/64 to (n + b)/64; i += 64)
 sum += input[i]
float scalarSum = waveReduceViaLocalMemory(sum)

Current models ease programming by viewing the vector as a set of scalars
ALUs, apparently though not really independent, with varying degree of
hardware assistance (and hence overhead):
float sum(0)
for(i = n/64 to (n + b)/64; i += 64)
 sum += input[i]
float scalarSum = waveReduceViaLocalMemory(sum)

17| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

They don’t seem so different!

For simple cases this is true
– Vector issues for GPUs are not a programming problem
– The differences are more about lazy CPU programming than difficulties of GPU programming

However
– GPUs really have been hard to program for
– So let’s look at the real problems and how we can address them

18| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Improving the programming
model

Fixing the composition problem

19| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Function COMPOSITION

The ability of decomposing a larger problem into sub-components
The ability to replace one sub-component with another sub-component with the same external semantics

algorithm = f g

20| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Composability in current models

Current GPU programming models suffer from composability limitations

The data-parallel model works in simple cases. Its fixed, limited nature breaks down when:
– We need to use long-running threads to more efficiently perform reductions
– We want to synchronize inside and outside library calls
– We want to pass memory spaces into libraries
– We need to pass data structures cleanly between threads

21| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

address spaces and
communication

22| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Memory address spaces are not COMPOSABLE

void foo(global int *)

{

 …

}

void bar(global int * x)

{

 foo(x); // works fine

 local int a[1];

 a[0] = *x;

 foo(a); // will now not work

}

23| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

OpenCL™ C++ addresses memory spaces to a degree

Develop device code using full C++

Extending OpenCL™ address spaces in the C++ type system
– Automatic inference of address spaces, handle this pointer address space deduction

This works particularly well with the Khronos C++ API
– #include <CL/cl.hpp>
– Kernel functors:

std::function<Event (const cl::EnqueueArgs&, cl::Pointer<int>) plus = make_kernel<cl::Pointer<int>, int>(

 “kernel void plus(global Pointer<int> io)

 {

 int I = get_global_id(0);

 *(io+i) = *(io+i) * 2;

 }”);

24| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Opencl™ Kernel Language

template<address-space aspace_>

struct Shape {

 int foo(aspace_ Colour&) global + local;

 int foo(aspace_ Colour&) private;

 int bar(void);

};

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

• C+11 features used to handle
cases when type of “this”
needs to be written down by
the developer.

• C+11 features used to handle
cases when type of “this”
needs to be written down by
the developer.

• Abstract over address space
qualifiers.

• Methods can be annotated with
address spaces, controls “this”
pointer location. Extended to
overloading.

• Default address space for “this” is
deduced automatically. Support
default constructors.

• Abstract over address space
qualifiers.

• Methods can be annotated with
address spaces, controls “this”
pointer location. Extended to
overloading.

• Default address space for “this” is
deduced automatically. Support
default constructors.

25| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Memory consistency

We can also add a “flat” memory address space to improve the situation
– Memory regions computed based on address, not instruction

Even in global memory, communication is problematic

We need to guarantee correct memory consistency
– “at end of kernel execution” is simply not fine-grained enough for a lot of workloads

Solution!
– Define a clear memory consistency model

26| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

HSA Memory Model

Designed to be compatible with C++11, Java and .NET Memory Models

Relaxed consistency memory model for parallel compute performance

 Loads and stores can be re-ordered by the finalizer

Visibility controlled by:
– Load.Acquire*, Load.Dep, Store.Release*
– Barriers

With platform consistency, we can now pass and use pointer-based data structures correctly across the
device boundary

*sequential consistent ordering

27| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

heterogeneous system architecture

System
Integration

GPU compute
context switch

GPU graphics
pre-emption

Quality of Service

Extend to
Discrete GPU

Architectural
Integration

Unified Address Space
for CPU and GPU

Fully coherent memory
between CPU & GPU

GPU uses pageable
system memory via

CPU pointers

Optimized
Platforms

Bi-Directional Power
Mgmt between CPU

and GPU

GPU Compute C++
support

User mode schedulng

Physical
Integration

Integrate CPU & GPU
in silicon

Unified Memory
Controller

Common
Manufacturing

Technology

28| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Synchronization

29| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Barrier synchronization IS not COMPOSaBLE

Producer/consumer patterns in SPMD-on-SIMD model must take SIMD execution into account

foreach work item i in buffer range

 for(some loop) {

 if(work item is producer) {

 // communicate

 barrier();

 } else {

 // communicate

 barrier();

 }

 }

}

Simple OpenCL barriers do not
work in control flow. These are
different barriers, we must hit both.

Simple OpenCL barriers do not
work in control flow. These are
different barriers, we must hit both.

Even if the barriers could be
treated correctly, the SIMD width
matters.

Even if the barriers could be
treated correctly, the SIMD width
matters.

30| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Barrier synchronization IS not COMPOSaBLE

Producer/consumer patterns in SPMD-on-SIMD model must take SIMD execution into account

foreach work item i in buffer range

 for(some loop) {

 if(work item is producer) {

 // communicate

 barrier();

 } else {

 // communicate

 barrier();

 }

 }

}

Dependency – we hit both
barrier instances

Wavefront (thread) Wavefront (thread)

31| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Barrier synchronization IS not COMPOSaBLE

Producer/consumer patterns in SPMD-on-SIMD model must take SIMD execution into account

foreach work item i in buffer range

 for(some loop) {

 if(work item is producer) {

 // communicate

 barrier();

 } else {

 // communicate

 barrier();

 }

 }

}

Dependency – We only have one
PC, can’t hit both barrier instances

Wavefront (thread) Wavefront (thread)

32| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Barrier synchronization IS not COMPOSaBLE

What if we use libraries?

foreach work item i in buffer range

 for(some loop) {

 if(work item is producer) {

 // communicate

 send();

 } else {

 // communicate

 receive();

 }

 }

}

In the presence of libraries,wavefront-
structured barriers are very hard to
enforce.

Composability is at risk.

In the presence of libraries,wavefront-
structured barriers are very hard to
enforce.

Composability is at risk.

Do send and receive contain barriers?Do send and receive contain barriers?

33| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Making Barriers first class

Barrier objects, introduce barriers as first class values with a set of well define operations:
– Construction – initialize a barrier for some sub-set of work-items within a work-group or across work-

groups
– Arrive – work-item marks the barrier as satisfied
– Skip – work-item marks the barrier as satisfied and note that it will no longer take part in barrier

operations. Allows early exit from a loop or divergent control where work-item never intends to hit take
part in barrier

– Wait – work-item marks the barrier as satisfied and waits for all other work-items to arrive, wait, or
skip.

34| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

BARRIER OBJECT EXAMPLE – Simple Divergent control flow

barrier b(8);

parallelFor(Range<1>(8), [&b] (Index<1> i) {

 int val = i.getX();

 scratch[i] = val;

 if(i < 4) {

 b.wait();

 x[i] = scratch[i+1];

 } else {

 b.skip();

 x[i] = 17;

 }});

We can arrive or skip
here, meaning that we
acknowledge the
barrier but do not wait
on it if i >= 4

We can arrive or skip
here, meaning that we
acknowledge the
barrier but do not wait
on it if i >= 4

35| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

BARRIER OBJECT EXAMPLE – LOOP FLOW

barrier b(8);

parallelFor(Range<1>(8) [&b] (Index<1> i) {

 scratch[i.getX()] = i.getX();

 if(i.getX() < 4) {

 for(int j = 0; j < i; ++j) {

 b.wait();

 x[i] += scratch[i+1];

 }

 b.skip();

 } else {

 b.skip();

 x[i.getX()] = 17;

 }});

Inside the loop we need to
synchronize repeatedly
Inside the loop we need to
synchronize repeatedly

Early exit or skipping the loop
entirely should never again affect
synchronization within the loop.

Early exit or skipping the loop
entirely should never again affect
synchronization within the loop.

36| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

BARRIER OBJECT EXAMPLE – Calling a function from within Control flow

barrier b(8);

parallelFor(Range<1>(8), [&b] (Index<1> i) {

 scratch[i] = i.getX();

 if(i.getX() < 4) {

 someOpaqueLibraryFunction(i.getX(), b);

 } else {

 b.skip();

 x[i.getX()] = 17;

 }});

void someOpaqueLibraryFunction(

 const int i, int *scratch, barrier &b)

{

 for(int j = 0; j < i; ++j) {

 b.wait();

 x[i] += scratch[i+1];

 }

 b.skip();

}

Barrier used outside the
library function and passed
in

Barrier used outside the
library function and passed
in

The same barrier used
from within the library
function

The same barrier used
from within the library
function

37| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Barriers and threads

Think about what this means about our definition of a thread

Without first class barriers
– A single work item can only be treated as a thread in the absence of synchronization
– With synchronization the SIMD nature of execution must be accounted for

With first class barriers
– A single work item can be treated as a thread
– It will behave, from a correctness point of view, like a thread
– Only performance suffers from the SPMD-on-SIMD execution

38| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

What if?
Channels

39| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

CHANNELS - Persistent Control Processor Threading Model

Add data-flow support to GPGPU

We are not primarily notating this as producer/consumer kernel bodies
– That is that we are not promoting a method where one kernel loops producing values and another

loops to consume them
– That has the negative behavior of promoting long-running kernels
– We’ve tried to avoid this elsewhere by basing in-kernel launches around continuations rather than

waiting on children

 Instead we assume that kernel entities produce/consume but consumer work-items are launched on-
demand

An alternative to the point to point data flow using of persistent threads, avoiding the uber-kernel

40| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

41| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

42| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

43| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

44| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

45| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

46| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

47| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

48| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Operational Flow

49| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Persistent Control Processor Threading Model

50| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

channel example

std::function<bool (opp::Channel<int>*)> predicate =
 [] (opp::Channel<int>* c) -> bool __device(fql) {
 return c->size() % PACKET_SIZE == 0;
};

opp::Channel<int> b(N);

b.executeWith(
 predicate,
 opp::Range<1>(CHANNEL_SIZE),
 [&sumB] (opp::Index<1>) __device(opp) {
 sumB++;
 });

opp::Channel<int> c(N);

c.executeWith(
 predicate,
 opp::Range<1>(CHANNEL_SIZE),
 [&sumC] (opp::Index<1>, const int v) __device(opp) {
 sumC += v;
 });

opp::parallelFor(
 opp::Range<1>(N),
 [a, &b, &c] (opp::Index<1> index) __device(opp) {
 unsigned int n = *(a+index.getX());
 if (n > 5) {
 b.write(n);
 }
 else {
 c.write(n);
 }
 });

51| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Back to basics

52| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Maybe we are going about it wrong?

Do we really want to be doing these big data-parallel clustered dispatches?
– What happens if we step a little back and rethink?

What do people really want to do?
– What about a motion vector search:

foreach block:

 while(found closest match):

 foreach element in comparison

There is serial code mixed in with two levels of parallel code
– So what if instead of trying to do a single blocked dispatch we explicitly layer the launch for the

programmer?

53| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Layered dispatch

parallelFor(int numThreads [](int index){ // “scalar” functor

 // do scalar stuff

 // for example, to do a motion estimation we might do

 X = int2(0,0);

 sumSq = 0.f;

 while(sumSq still being minimized){

 X = new position from X’

 Accumulator<int2> acc;

 localParallelFor(int2(-5, -5) to int2(5, 5), [=X](int2 index) {

 auto diff = currentFrame(X + index) - previousFrame(X + index);

 acc += diff;

 }); // end localParallelFor

 If sumSq < acc // See if it’s small enough or continue search using heuristic

 X’ = X

 }});

A parallel thread launch:
One wavefront/workgroup
launched for each index.
One launched for each block in
the data set.

A parallel thread launch:
One wavefront/workgroup
launched for each index.
One launched for each block in
the data set.

A serial loop that searches for the
best match. This is best written as
a serial loop and is clean scalar
code. Extracting this from the
parallel context can feel messy.

A serial loop that searches for the
best match. This is best written as
a serial loop and is clean scalar
code. Extracting this from the
parallel context can feel messy.

Parallel loop:
Covers each pixel in the block
being compared. Easily
vectorisable and with no launch
overhead.

Parallel loop:
Covers each pixel in the block
being compared. Easily
vectorisable and with no launch
overhead.

54| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Research directions

There is a need to look at more source languages targeting heterogeneous and vector architectures
– C++AMP and similar models fill a certain niche, but they target simplification the tool chain rather than

expanding the scope of the programming model

HSA will help
– Multi-vendor
– Architected low-level APIs
– Well defined low-level intermediate language

 Vitally: with largely preserved optimizations. Finalizer will not interfere too much with code generation.

 Fast linking.

55| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Conclusions

HSA takes some steps towards improving the execution model and giving a programming model target
– HSA does not directly improve the programming model
– It offers an excellent low-level framework

 It is time to start enthusiastically looking at the programming model
– Let’s program the system in a single clean manner
– Let’s forget nonsense about how GPUs are vastly different beasts from CPUs – it’s just not true
– Let’s get away from 400x speedups, and magical efficiency gains and look at the system realistically
– But let’s not forget: performance portability without abstraction is a pipe dream

Please use HSA as a starting point
– Go wild and use your imaginations

56| Can GPGPU programming be liberated from the data-parallel bottleneck? | June 12, 2012

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions
and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited
to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no
obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to
make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO
RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS
INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL
OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, AMD Radeon and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a
trademark of Apple Inc. used with permission by Khronos. All other names used in this presentation are for informational purposes
only and may be trademarks of their respective owners.

© 2012 Advanced Micro Devices, Inc.

	Slide 1
	Slide 2
	realism Redirecting from mythology
	last year…
	First of all: GPU myths
	First of all: GPU myths
	Branchy code: a concept to consider
	The SIMD core
	The SIMD core
	The SIMD core
	The SIMD core
	Branching and the new ISA
	Familiar?
	So returning to the topic of branches
	The CPU programmatically: a trivial example
	The GPU programmatically: The same trivial example
	They don’t seem so different!
	Improving the programming model Fixing the composition problem
	Function COMPOSITION
	Composability in current models
	address spaces and communication
	Memory address spaces are not COMPOSABLE
	OpenCL™ C++ addresses memory spaces to a degree
	Opencl™ Kernel Language
	Memory consistency
	HSA Memory Model
	heterogeneous system architecture
	Synchronization
	Barrier synchronization IS not COMPOSaBLE
	Barrier synchronization IS not COMPOSaBLE
	Barrier synchronization IS not COMPOSaBLE
	Barrier synchronization IS not COMPOSaBLE
	Making Barriers first class
	BARRIER OBJECT EXAMPLE – Simple Divergent control flow
	BARRIER OBJECT EXAMPLE – LOOP FLOW
	Slide 36
	Barriers and threads
	What if? Channels
	CHANNELS - Persistent Control Processor Threading Model
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Operational Flow
	Persistent Control Processor Threading Model
	channel example
	Back to basics
	Maybe we are going about it wrong?
	Layered dispatch
	Research directions
	Conclusions
	Slide 56

