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HSA AND THE MODERN GPU 

 In this brief talk we will cover three topics: 

– Changes to the shader core and memory system 

– Changes to the use of pointers 

– Architected definitions to use these new features 

 

We’ll look both at how the hardware is becoming more flexible, and how the changes will benefit OpenCL 

implementations. 
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THE HD7970  

AND  

GRAPHICS CORE NEXT 
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GPU EXECUTION AS WAS 

We often view GPU programming as a set of independent threads, more reasonably known as “work 
items” in OpenCL: 

kernel void blah(global float *input, global float *output) { 

  output[get_global_id(0)] = input[get_global_id(0)]; 

} 

 

Which we flatten to an intermediate language known as AMD IL:  

 

Note that AMD IL contains short vector instructions 

mov r255, r1021.xyz0 

mov r255, r255.x000 

mov r256, l9.xxxx 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r253.x___, r2.xxxx, r255.xxxx 

mov r255, r1022.xyz0 

mov r255, r255.x000 

ishl r255.x___, r255.xxxx, r256.xxxx 

iadd r254.x___, r1.xxxx, r255.xxxx 

mov r1010.x___, r254.xxxx 

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx 

mov r254.x___, r1011.xxxx 

mov r1011.x___, r254.xxxx 

mov r1010.x___, r253.xxxx 

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx 

ret 
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MAPPING TO THE HARDWARE 

The GPU hardware of course does not execute those work items as threads 

 

The reality is that high-end GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever automated stack management to handle divergent control flow across the vector 
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IT WAS NEVER QUITE THAT SIMPLE 

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines 

– Data-parallel through hardware vectorization 

– Instruction parallel through both multiple cores and VLIW units 

The HD6970 issued a 4-way VLIW instruction per work item 

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane 

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions 
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WHAT DOES THAT MEAN TO THE PROGRAMMER? 

The IL we saw earlier ends up compiling to something like this: 

; --------  Disassembly -------------------- 

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)  

      0  w: LSHL        ____,  R0.x,  2       

      1  z: ADD_INT     ____,  KC0[0].x,  PV0.w       

      2  y: LSHR        R0.y,  PV1.z,  2       

      3  x: MULLO_INT   R1.x,  R1.x,  KC1[1].x       

         y: MULLO_INT   ____,  R1.x,  KC1[1].x       

         z: MULLO_INT   ____,  R1.x,  KC1[1].x       

         w: MULLO_INT   ____,  R1.x,  KC1[1].x       

01 TEX: ADDR(48) CNT(1)  

      4  VFETCH R2.x___, R0.y, fc153   

         FETCH_TYPE(NO_INDEX_OFFSET)  

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)  

      5  w: ADD_INT     ____,  R0.x,  R1.x       

      6  z: ADD_INT     ____,  PV5.w,  KC0[6].x       

      7  y: LSHL        ____,  PV6.z,  2       

      8  x: ADD_INT     ____,  KC1[1].x,  PV7.y       

      9  x: LSHR        R0.x,  PV8.x,  2       

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4)  MARK  VPM  

04 END  

END_OF_PROGRAM 
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Clause header 
Work executed by the 

shared scalar unit 
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Work executed by the 

shared scalar unit 
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VLIW instruction packet 
Compiler-generated instruction level 

parallelism for the VLIW unit. 

Each instruction (x, y, z, w) executed 

across the vector. 
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across the vector. 

Notice the poor occupancy of VLIW slots 
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WHY DID WE SEE INEFFICIENCY? 

The architecture was well suited to graphics workloads: 

– VLIW was easily filled by the vector-heavy graphics kernels 

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient 

 

Unfortunately, workloads change with time. 

 

So how did we change the architecture to improve the situation? 
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AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

                       

                                                       

 

                               

 

                            

                                               

                                       

 

                               



19 |  IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU   |  27 October 2012  |  Public 

AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

                               

 

                            

                                               

                                       

 

                               



20 |  IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU   |  27 October 2012  |  Public 

AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

Full read/write L1 data caches 

 

SIMD cores grouped in fours 

– Scalar data and instruction cache per cluster 

– L1, LDS and scalar processor per core 

 

Up to 32 cores / compute units 

 



21 |  IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU   |  27 October 2012  |  Public 

AMD RADEON HD7970 - GLOBALLY 

Brand new – but at this level it doesn’t look too different 

 

Two command processors 

– Capable of processing two command queues concurrently 

 

Full read/write L1 data caches 

 

SIMD cores grouped in fours 

– Scalar data and instruction cache per cluster 

– L1, LDS and scalar processor per core 

 

Up to 32 cores / compute units 

 



22 |  IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU   |  27 October 2012  |  Public 

THE SIMD CORE 

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed 

globally 
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THE SIMD CORE 

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size 
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THE SIMD CORE 

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size 

Then let us consider the VLIW ALUs 
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THE SIMD CORE 

Remember we could view the architecture two ways: 

– An array of VLIW units 
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THE SIMD CORE 

Remember we could view the architecture two ways: 

– An array of VLIW units 

– A VLIW cluster of vector units 
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THE SIMD CORE 

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the 

compiler 

No VLIW! 

 

 

 

 

 

 

 

The heart of Graphics Core Next: 

– A scalar processor with four 16-wide vector units 

– Each lane of the vector, and hence each IL work item, is now scalar 
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THE NEW ISA AND BRANCHING 

float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

  //Registers r0 contains “a”, r1 contains “b” 

  //Value is returned in r2 

 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current exec mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all lanes fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

label0:  

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec) 

s_cbranch_execz label1 //Branch if all lanes fail 

v_sub_f32 r2,r1,r0 //result = b – a 

v_mul_f32 r2,r2,r1 //result = result * b 

label1: 

s_mov_b64 exec,s0 //Restore exec mask 

Simpler and more efficient 

 Instructions for both sets of execution units 

inline 

No VLIW 

– Fewer compiler-induced bubbles in the 

instruction schedule 

Full support for exceptions, function calls 

and recursion 
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FAMILIAR? 

 If we add the frontend of the core… 

64kB Local Data Share: 32 banks with integer atomic units

16kB 
read-write 
L1 cache

Scalar
processor

Instruction 
decode etc

“Graphics Core Next” core 

“Barcelona” core 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

How would an implicitly vectorized program look mapped onto here using SSE 

instructions? 

 

So different? 
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SHARED VIRTUAL MEMORY 
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TAKING THE MEMORY SYSTEM CHANGES FURTHER AFIELD 

GCN-based devices are more flexible 

– Start to look like CPUs with few obvious shortcomings 

 

The read/write cache is a good start at improving the memory system 

– Improves efficiency on the device 

– Provides a buffer for imperfectly written code 

 

We needed to go a step further on an SoC 

– Memory in those caches should be the same memory used by the “host” CPU 

– In the long run, the CPU and GPU become peers, rather than having a host/slave relationship 
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WHAT DOES THIS MEAN? 
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We can map this into the same virtual address space 

 
                                               



42 |  IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU   |  27 October 2012  |  Public 

 

 

 

 

 

 

 

 

 

WHAT DOES THIS MEAN? 

We can store x86 virtual pointers here 

Data stored here is addressed in the same way as that on the CPU 

We can map this into the same virtual address space 

 
We can perform work on CPU data directly here 
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USE CASES FOR THIS ARE FAIRLY OBVIOUS 

Pointer chasing algorithms with mixed GPU/CPU use 

 

Algorithms that construct data on the CPU, use it on the GPU 

 

Allows for more fine-grained data use without explicit copies 

 

Covers cases where explicit copies are difficult: 

– Picture OS allocated data that the OpenCL runtime doesn’t know about 

 

However, that wasn’t quite enough to achieve our goals… 
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SO WHAT ELSE DO WE NEED? 
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SO WHAT ELSE DO WE NEED? 

We need a global view of the GPU, not just of the shader cores 
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Of course, we need to see the 

data here too 
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SO WHAT ELSE DO WE NEED? 

We need a global view of the GPU, not just of the shader cores 

 

 

 

 

 

 

 

 

 

 

                                                    

Of course, we need to see the 

data here too 

Most importantly! We need to be able to compute on the 

same data here. 
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SO WHAT ELSE DO WE NEED? 

We need a global view of the GPU, not just of the shader cores 

 

 

 

 

 

 

 

 

 

 

 Let’s look at how GPU work dispatch works currently 

 

Of course, we need to see the 

data here too 

Most importantly! We need to be able to compute on the 

same data here. 
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 Application codes to the 
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ARCHITECTED ACCESS 
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HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM 

Open Architecture, published specifications 

– HSAIL virtual ISA 

– HSA memory model 

– Architected Queuing Language 

 

HSA system architecture 

– Inviting partners to join us, in all areas 

– Hardware companies 

– Operating Systems 

– Tools and Middleware 

– Applications 

HSA Foundation being formed 
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ARCHITECTED INTERFACES 

Standardize interfaces to features of the 

system 

– The compute cores 

– The memory hierarchy 

– Work dispatch 

Standardize access to the device 

– Memory backed queues 

– User space data structures 
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HSA INTERMEDIATE LAYER - HSAIL 

HSAIL is a virtual ISA for parallel programs 

– Finalized to ISA by a runtime compiler or 

“Finalizer” 

Explicitly parallel 

– Designed for data parallel programming 

Support  for exceptions, virtual functions,   

and other high level language features 

Syscall methods  

– GPU code can call directly  to system 

services, IO, printf, etc 

Debugging support 
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HSA MEMORY MODEL 

Designed to be compatible with C++11, 

Java and .NET Memory Models 

Relaxed consistency memory model for 

parallel compute performance 

Loads and stores can be re-ordered by 

the finalizer  

Visibility controlled by: 

– Load.Acquire  

– Store.Release 

– Barriers 
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ARCHITECTED QUEUING LANGUAGE 

Defines dispatch characteristics in a small 

packet in memory 

– Platform neutral work offload 

Designed to be interpreted by the device 

– Firmware implementations 

– Or directly implemented in hardware 
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QUEUES 

User space memory allows queues to span devices 

Standardized packet format (AQL) enables flexible and portable use 

Single consumer, multiple producer of work 

– Enables support for task queuing runtimes and device->self enqueue 

Queue 
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OPENCL™ AND HSA 

HSA is an optimized platform architecture 

for OpenCL™ 

– Not an alternative to OpenCL™ 

OpenCL™ on HSA will benefit from 

– Avoidance of wasteful copies 

– Low latency dispatch 

– Improved memory model 

– Pointers shared between CPU and GPU 

HSA also exposes a lower level programming 

interface, for those that want the ultimate in 

control and performance 

– Optimized libraries may choose the lower 

level interface 
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QUESTIONS 
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