
HSA AND THE MODERN GPU

Lee Howes

AMD Heterogeneous System Software

2 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

HSA AND THE MODERN GPU

 In this brief talk we will cover three topics:

– Changes to the shader core and memory system

– Changes to the use of pointers

– Architected definitions to use these new features

We’ll look both at how the hardware is becoming more flexible, and how the changes will benefit OpenCL

implementations.

3 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE HD7970

AND

GRAPHICS CORE NEXT

4 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

GPU EXECUTION AS WAS

We often view GPU programming as a set of independent threads, more reasonably known as “work
items” in OpenCL:

kernel void blah(global float *input, global float *output) {

 output[get_global_id(0)] = input[get_global_id(0)];

}

Which we flatten to an intermediate language known as AMD IL:

Note that AMD IL contains short vector instructions

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

5 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector

6 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

7 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

8 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

9 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

10 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

MAPPING TO THE HARDWARE

The GPU hardware of course does not execute those work items as threads

The reality is that high-end GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever automated stack management to handle divergent control flow across the vector
mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

mov r255, r1021.xyz0

mov r255, r255.x000

mov r256, l9.xxxx

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r253.x___, r2.xxxx, r255.xxxx

mov r255, r1022.xyz0

mov r255, r255.x000

ishl r255.x___, r255.xxxx, r256.xxxx

iadd r254.x___, r1.xxxx, r255.xxxx

mov r1010.x___, r254.xxxx

uav_raw_load_id(11)_cached r1011.x___, r1010.xxxx

mov r254.x___, r1011.xxxx

mov r1011.x___, r254.xxxx

mov r1010.x___, r253.xxxx

uav_raw_store_id(11) mem.x___, r1010.xxxx, r1011.xxxx

ret

11 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

IT WAS NEVER QUITE THAT SIMPLE

The HD6970 architecture and its predecessors were combined multicore SIMD/VLIW machines

– Data-parallel through hardware vectorization

– Instruction parallel through both multiple cores and VLIW units

The HD6970 issued a 4-way VLIW instruction per work item

– Architecturally you could view that as a 4-way VLIW instruction issue per SIMD lane

– Alternatively you could view it as a 4-way VLIW issue of SIMD instructions

12 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

13 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause header
Work executed by the

shared scalar unit

14 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

15 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

VLIW instruction packet
Compiler-generated instruction level

parallelism for the VLIW unit.

Each instruction (x, y, z, w) executed

across the vector.

16 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THAT MEAN TO THE PROGRAMMER?

The IL we saw earlier ends up compiling to something like this:

; -------- Disassembly --------------------

00 ALU: ADDR(32) CNT(9) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)

 0 w: LSHL ____, R0.x, 2

 1 z: ADD_INT ____, KC0[0].x, PV0.w

 2 y: LSHR R0.y, PV1.z, 2

 3 x: MULLO_INT R1.x, R1.x, KC1[1].x

 y: MULLO_INT ____, R1.x, KC1[1].x

 z: MULLO_INT ____, R1.x, KC1[1].x

 w: MULLO_INT ____, R1.x, KC1[1].x

01 TEX: ADDR(48) CNT(1)

 4 VFETCH R2.x___, R0.y, fc153

 FETCH_TYPE(NO_INDEX_OFFSET)

02 ALU: ADDR(41) CNT(7) KCACHE0(CB0:0-15) KCACHE1(CB1:0-15)

 5 w: ADD_INT ____, R0.x, R1.x

 6 z: ADD_INT ____, PV5.w, KC0[6].x

 7 y: LSHL ____, PV6.z, 2

 8 x: ADD_INT ____, KC1[1].x, PV7.y

 9 x: LSHR R0.x, PV8.x, 2

03 MEM_RAT_CACHELESS_STORE_DWORD__NI: RAT(11)[R0].x___, R2, ARRAY_SIZE(4) MARK VPM

04 END

END_OF_PROGRAM

Clause body
Units of work dispatched

by the shared scalar unit

Clause header
Work executed by the

shared scalar unit

VLIW instruction packet
Compiler-generated instruction level

parallelism for the VLIW unit.

Each instruction (x, y, z, w) executed

across the vector.

Notice the poor occupancy of VLIW slots

17 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHY DID WE SEE INEFFICIENCY?

The architecture was well suited to graphics workloads:

– VLIW was easily filled by the vector-heavy graphics kernels

– Minimal control flow meant that the monolithic, shared thread scheduler was relatively efficient

Unfortunately, workloads change with time.

So how did we change the architecture to improve the situation?

18 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

19 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

20 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

21 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

AMD RADEON HD7970 - GLOBALLY

Brand new – but at this level it doesn’t look too different

Two command processors

– Capable of processing two command queues concurrently

Full read/write L1 data caches

SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

Up to 32 cores / compute units

22 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed

globally

23 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

The SIMD unit on the HD6970 architecture had a branch control but full scalar execution was performed

globally

24 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

25 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

On the HD7970 we have a full scalar processor and the L1 cache and LDS have been doubled in size

Then let us consider the VLIW ALUs

26 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

27 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

Remember we could view the architecture two ways:

– An array of VLIW units

– A VLIW cluster of vector units

28 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE SIMD CORE

Now that we have a scalar processor we can dynamically schedule instructions rather than relying on the

compiler

No VLIW!

The heart of Graphics Core Next:

– A scalar processor with four 16-wide vector units

– Each lane of the vector, and hence each IL work item, is now scalar

29 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE NEW ISA AND BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Simpler and more efficient

 Instructions for both sets of execution units

inline

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls

and recursion

30 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE NEW ISA AND BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Simpler and more efficient

 Instructions for both sets of execution units

inline

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls

and recursion

31 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE NEW ISA AND BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Simpler and more efficient

 Instructions for both sets of execution units

inline

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls

and recursion

32 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

THE NEW ISA AND BRANCHING

float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 //Registers r0 contains “a”, r1 contains “b”

 //Value is returned in r2

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current exec mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all lanes fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

label0:

s_andn2_b64 exec,s0,exec //Do “else”(s0 & !exec)

s_cbranch_execz label1 //Branch if all lanes fail

v_sub_f32 r2,r1,r0 //result = b – a

v_mul_f32 r2,r2,r1 //result = result * b

label1:

s_mov_b64 exec,s0 //Restore exec mask

Simpler and more efficient

 Instructions for both sets of execution units

inline

No VLIW

– Fewer compiler-induced bubbles in the

instruction schedule

Full support for exceptions, function calls

and recursion

33 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

64kB
read-write
L1 cache

Instruction
decode etc

512kB
read-write
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar
ALUs, branch
control etc)

FAMILIAR?

 If we add the frontend of the core…

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

“Graphics Core Next” core

“Barcelona” core

34 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

64kB
read-write
L1 cache

Instruction
decode etc

512kB
read-write
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar
ALUs, branch
control etc)

FAMILIAR?

 If we add the frontend of the core…

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

“Graphics Core Next” core

“Barcelona” core

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

35 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

64kB
read-write
L1 cache

Instruction
decode etc

512kB
read-write
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar
ALUs, branch
control etc)

FAMILIAR?

 If we add the frontend of the core…

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

“Graphics Core Next” core

“Barcelona” core

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

How would an implicitly vectorized program look mapped onto here using SSE

instructions?

So different?

36 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SHARED VIRTUAL MEMORY

37 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

TAKING THE MEMORY SYSTEM CHANGES FURTHER AFIELD

GCN-based devices are more flexible

– Start to look like CPUs with few obvious shortcomings

The read/write cache is a good start at improving the memory system

– Improves efficiency on the device

– Provides a buffer for imperfectly written code

We needed to go a step further on an SoC

– Memory in those caches should be the same memory used by the “host” CPU

– In the long run, the CPU and GPU become peers, rather than having a host/slave relationship

38 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THIS MEAN?

39 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THIS MEAN?

We can store x86 virtual pointers here

40 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THIS MEAN?

We can store x86 virtual pointers here

Data stored here is addressed in the same way as that on the CPU

41 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THIS MEAN?

We can store x86 virtual pointers here

Data stored here is addressed in the same way as that on the CPU

We can map this into the same virtual address space

42 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

WHAT DOES THIS MEAN?

We can store x86 virtual pointers here

Data stored here is addressed in the same way as that on the CPU

We can map this into the same virtual address space

We can perform work on CPU data directly here

43 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

USE CASES FOR THIS ARE FAIRLY OBVIOUS

Pointer chasing algorithms with mixed GPU/CPU use

Algorithms that construct data on the CPU, use it on the GPU

Allows for more fine-grained data use without explicit copies

Covers cases where explicit copies are difficult:

– Picture OS allocated data that the OpenCL runtime doesn’t know about

However, that wasn’t quite enough to achieve our goals…

44 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SO WHAT ELSE DO WE NEED?

45 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SO WHAT ELSE DO WE NEED?

We need a global view of the GPU, not just of the shader cores

46 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SO WHAT ELSE DO WE NEED?

We need a global view of the GPU, not just of the shader cores

Of course, we need to see the

data here too

47 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SO WHAT ELSE DO WE NEED?

We need a global view of the GPU, not just of the shader cores

Of course, we need to see the

data here too

Most importantly! We need to be able to compute on the

same data here.

48 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

SO WHAT ELSE DO WE NEED?

We need a global view of the GPU, not just of the shader cores

 Let’s look at how GPU work dispatch works currently

Of course, we need to see the

data here too

Most importantly! We need to be able to compute on the

same data here.

49 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

50 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

Data copied into kernel

memory

51 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

Data copied into kernel

memory

Queue packets explicitly

DMAd to the device

52 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

53 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

Queues are in user-mode

virtual memory

54 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

Queues are in user-mode

virtual memory

Command processor can read

queues directly

55 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No required APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

56 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

ARCHITECTED ACCESS

57 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM

Open Architecture, published specifications

– HSAIL virtual ISA

– HSA memory model

– Architected Queuing Language

HSA system architecture

– Inviting partners to join us, in all areas

– Hardware companies

– Operating Systems

– Tools and Middleware

– Applications

HSA Foundation being formed

58 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

ARCHITECTED INTERFACES

Standardize interfaces to features of the

system

– The compute cores

– The memory hierarchy

– Work dispatch

Standardize access to the device

– Memory backed queues

– User space data structures

59 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

HSA INTERMEDIATE LAYER - HSAIL

HSAIL is a virtual ISA for parallel programs

– Finalized to ISA by a runtime compiler or

“Finalizer”

Explicitly parallel

– Designed for data parallel programming

Support for exceptions, virtual functions,

and other high level language features

Syscall methods

– GPU code can call directly to system

services, IO, printf, etc

Debugging support

60 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

HSA MEMORY MODEL

Designed to be compatible with C++11,

Java and .NET Memory Models

Relaxed consistency memory model for

parallel compute performance

Loads and stores can be re-ordered by

the finalizer

Visibility controlled by:

– Load.Acquire

– Store.Release

– Barriers

61 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

ARCHITECTED QUEUING LANGUAGE

Defines dispatch characteristics in a small

packet in memory

– Platform neutral work offload

Designed to be interpreted by the device

– Firmware implementations

– Or directly implemented in hardware

62 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

63 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

64 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

65 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

66 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

67 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

68 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

69 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

– Enables support for task queuing runtimes and device->self enqueue

Queue

70 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

Hardware - APUs, CPUs, GPUs

AMD user mode component AMD kernel mode component All others contributed by third parties or AMD

Driver Stack

Domain Libraries

OpenCL™ 1.x, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

71 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

OPENCL™ AND HSA

HSA is an optimized platform architecture

for OpenCL™

– Not an alternative to OpenCL™

OpenCL™ on HSA will benefit from

– Avoidance of wasteful copies

– Low latency dispatch

– Improved memory model

– Pointers shared between CPU and GPU

HSA also exposes a lower level programming

interface, for those that want the ultimate in

control and performance

– Optimized libraries may choose the lower

level interface

72 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

QUESTIONS

73 | IEEE Workshop: Data Parallelism for Multi-Core Chips and GPU | 27 October 2012 | Public

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

© 2011 Advanced Micro Devices, Inc.

