
OpenCL™ as an Infrastructure
LEE HOWES

MAY 2013

2 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

3 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

WHAT IS OPENCL?

Platform model

Memory model

Execution model

Programming model

4 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

WHAT IS OPENCL?

 The basic separation of a host from a set of devices

– Multiple devices individually versioned

– Multiple vendor runtimes accessible

 Designed to ensure a degree of backward

compatibility

– Future proofing of applications built on top of OpenCL

– As long as the right queries are used to perform version

checks!

Platform model

5 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

WHAT IS OPENCL?

 Specifies the interpretation we must apply to a device

 Devices consist of abstract computational elements

– Compute units

– Processing elements

 Compute units generally map to larger structural

entities with caches

– Cores, really

 Processing elements often map to SIMD lanes

– The standard specifies that SIMD execution on

processing elements is valid

Platform model

6 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

WHAT IS OPENCL?

 Work is abstracted as a command

– Commands follow a specific execution model

– Communication between commands follow a specific

memory model

 Commands as issued by the host

– To a specific queue

– The queue is associated with a given device

– There is no explicit control over compute units

Platform model

7 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

Execution model – device side

WHAT IS OPENCL?

 Slightly hierarchical data-parallel

execution

– Work-items in work-groups

 Work groups execute completely

independently

 Within a work-group work-items may

communicate and synchronize

– Using barrier synchronization primitives

 Work-items within a work-group must

thus, in the presence of barriers:

– execution concurrently

– make forward progress

 Note that work-items need ONLY be

concurrent in the presence of barriers

1024

1
0
2
4

Synchronization between work-

items possible only within

workgroups:

barriers and memory fences

Cannot synchronize

outside of a workgroup

8 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

Execution model – host side

WHAT IS OPENCL?

 Command queues allow us to manage data and perform computations on a

given device

 Can be in-order or out-of-order (within certain limits)

 Can only be filled from the host side

 While out-of-order queues may allow for concurrent command execution, they

do not require it

Command queues

9 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

Memory model

WHAT IS OPENCL?

 Structured

– Data is contained both in host-side buffers and in

device-side address spaces

– Implementations can use more efficient access modes

the more information they have about the data

 Intentionally weak

– Provides maximum portability to a range of

architectures

– Allows architectures to optimise location of data

 Memory consistency is defined ONLY at work-group

level and at synchronization points

Workgroup

Work-Item

Computer Device

Work-Item

Workgroup

Work-Item Work-Item

Host

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Local Memory Local Memory

Global/Constant Memory

Host Memory

10 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

Programming model

WHAT IS OPENCL?

 OpenCL‟s programming model comprises two sides:

– The host API

– The OpenCL C device programming language

 The host API is a standard C API that exposes the required functionality of the OpenCL standard

 The OpenCL C programming language is a C99-derived language with embedded C-style address

spaces

– Run-time compiled from a string

– Represents one instance in an SPMD execution that may be mapped to SIMD

 Abstractly OpenCL defines two models:

– Data-parallel and task-parallel

– Data-parallel is the execution model described earlier. Task-parallel is the launch of a single work-item domain

11 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

C

4.9%

A
p
p
lic

a
ti
o
n
 P

e
rf

o
rm

a
n
c
e

Language Adoption / Programmability (Source: LangPop.com)

Python

29.8%

Java

25.8%

Ruby

9.6%

C++

12.6%

OpenCL

Bubble size represents 2013 new project starts
Source: CodeEval.com

Javascript

3.9%

HOWEVER…

C#

2.5%

12 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

13 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

STANDARD LOW-LEVEL OPENCL USE

OpenCL

Host API

OpenCL

kernel

code

OpenCL

Runtime
Programmer

OpenCL

C string

C/C++

host code

Hand written Used

14 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

C++ BINDINGS AND RELATED APIS

 Official OpenCL C++ bindings. Various other C++ wrapper interfaces

OpenCL

Host API

OpenCL

kernel

code

OpenCL

Runtime
Programmer

OpenCL

C string

C/C++

host code

Function-like

dispatch,

reference

counting,

default

arguments

Hand written Used

15 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

LIBRARIES

 AMD APP BLAS/FFT, ViennaCL etc

OpenCL

Host API

OpenCL

kernel

code

OpenCL

Runtime
Programmer

C/C++

host code

Hand written Used

Kernels,

dispatch, data

management,

performance

tuning

16 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

BOLT

 C++ template library for OpenCL

OpenCL

Host API

OpenCL

kernel

code

OpenCL

Runtime
Programmer

OpenCL C

string

defines

operations

C/C++

host code
Templated

algorithm

selection

Hand written Used

17 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

BOLT – CLARIFICATION EXAMPLE

BOLT_FUNCTOR(Functor,

 struct Functor {

 float _a;

 Functor(float a) : _a(a) {};

 float operator() (const float &xx, const float &yy) {

 return _a * xx + log(yy) + sqrt(xx);

 };

 };

);

…

Functor func(10.0)

std::transform(A.begin(), A.end(), B.begin(), Z0.begin(), func);

bolt::cl::transform(A.begin(), A.end(), B.begin(), Z1.begin(), func);

18 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

19 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

LACK OF C++

 Static C++ features

– Generic kernels/templated operations

– A sophisticated type system

– Overloading

– Subclassing

 Dynamic C++ features

– Virtual functions/function pointers

– Exceptions

 It‟s true that AMD has a static C++ kernel language

– In the long term, is a runtime-compiled C++ kernel language the right way to go?

– What do people really want from C++?

20 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

LACK OF SINGLE-SOURCE

 The real use for C++?

– Passing types across kernel boundaries

– Templating device code from host code

 Cleaner, integrated models for new programmers

– Simple dispatch APIs

– Wrapper libraries can provide a lot of this

 Type safety of the kernel dispatch mechanism

– CLU is an approach for fixing this

 Is this something that is worth standardising, or is something that is worth supporting?

– Or something in between.

21 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

HOST-DRIVEN EXECUTION MODEL

 Host->Device->Host turnaround time can be slow

– When the device needs to generate more work this cycle can kill performance

 The fixed execution hierarchy cleanly abstracts a wide range of machines

– It matches none well

– Consider that many of the devices use vector execution, but this is poorly abstracted

 No well-defined concurrency between workgroups

22 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

WEAK MEMORY MODEL

 Like C before C11, OpenCL C has a very weakly defined memory model

– Weak in terms of consistency of operations

– Weak in terms of consistency of implementations

 The points at which memory is synchronized vary from one implementation to another

– Atomic operations may flush the cache or only ensure that the specific atomic operation is visible

– Acquiring a lock may fences memory operations between the acquire and release of the lock but other

implementations may allow considerable flexibility in memory reorderings

 In essence, OpenCL is not designed for communication between workgroups

– Therefore any such behaviour is implementation-defined

– This makes it hard to build on

23 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

ISSUES OF VECTOR EXECUTION AND FORWARD PROGRESS

 There is a lack of guarantees about forward progress in GPU schedulers

 Worse, still, the treatment of „SIMT‟ has serious correctness issues in the presence of synchronization

– Even if we fix the memory model

 As a trivial example:
while(!acquire_lock(&l)) {}

// Do some work

release_lock(l);

 If two work-items are passing through the block simultaneously

– One acquires the lock

– The others are spinning in the while loop

– The acquirer can not progress, do the work and release

 Deadlock through SIMD! (This is why SIMT is not threads: it‟s a software abstraction on top of threads)

24 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

OPENCL C AS THE ONLY ENTRY POINT DOESN‟T SCALE

 Outputting C is not a perfect compiler solution

– Therefore using OpenCL C as an intermediate representation is imperfect

 Many developers don‟t want to runtime compile OpenCL C

– Delays error reporting until very late in the process

– Requires storing of source code in the final application – poor IP protection

 That‟s not to say OpenCL C doesn‟t have its place

– Runtime compilation has great value under some circumstances

– A low-level entry point to the system is vital or experimentation and tuning

25 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

26 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

ENTRY POINTS: STANDARD PORTABLE INTERMEDIATE REPRESENTATION

 A proposed binary representation for OpenCL C programs

 Designed to be portable across OpenCL vendors

– One OpenCL vendor‟s toolchain might be used to generate the intermediate representation

– Another vendor‟s toolchain would consume it

 Possibly more importantly allows third party tool chains to generate a well-defined target

– Innovation on top of the OpenCL framework

– New programming models may target SPIR

– The generated SPIR and host API calls may then execute on the underlying OpenCL runtime

– Possible efficiency gains by removing the IR->C->IR transformation

 Defines the IR and rules for consumption

– Generation is undefined: if it were not, innovation would be stifled

27 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

STANDARD PORTABLE INTERMEDIATE REPRESENTATION

SPIR

binary

Compilers at

runtime (eg

OpenCL C)

Offline

OpenCL C

Compiler

Third party

compiler

Vendor-

specific

intermediate

language

Device ISA

Runtime Compile time

SPIR

binary

SPIR loader

28 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

PURPOSE

 Expand the set of languages that target OpenCL

runtimes

 Improve the ease of use of the standard

 Enable innovation

Enable third party

compilers

 OpenCL C‟s plain text kernels must be stored
somewhere

– A common ISV concern

– Mitigated only by compiling binaries for multiple
targets offline: no scaling

 SPIR is a binary representation of the kernel
– Minimal optimisation so the runtime can still optimise

for the target

– Some degree of obfuscation

Remove the need to

release plain text

kernel code

29 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

ONLY DEFINE CONSUMPTION

SPIR

binary

OpenCL C

compiler at

runtime

Offline

OpenCL C

Compiler

Third party

compiler

Define the intermediate representation and its mapping to the concepts in the OpenCL standard.

Leave SPIR production to innovative ISVs (and we as OpenCL runtime vendors can support it too)

Vendor-

specific

intermediate

language

Device ISA

SPIR

binary

SPIR loader

30 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

BASED ON LLVM-IR

 SPIR is based on LLVM-IR

– The current public provisional specification defines SPIR in terms of LLVM 3.1

 LLVM-IR is already used by tool chains, so was close to being suitable

– The goal was to make as small a set of modifications as possible to the standard

– Achieve portability without major change

– Maintain an easy path to future compatibility

– Track LLVM‟s built-in upgrade path to future versions of the infrastructure

 To be portable SPIR has to define the mapping from LLVM-IR types to OpenCL C types

 Add calling conventions and a new build target

31 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

STATUS OF SPIR

 Provisional specification released in November 2012

– Aim to collect feedback from the community

 There is an open source SPIR producer under development as part of Clang.

 The development of SPIR consumption is underway by AMD and other OpenCL vendors.

 However… it is still limited by OpenCL‟s underlying feature set and models

 As OpenCL evolves, SPIR will evolve

32 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

33 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

INTEL®‟S SHEVLIN PARK PROJECT

 C++AMP-on-OpenCL: a single source compiler

OpenCL

Host API

OpenCL

kernel

code

OpenCL

Runtime
Programmer

C/C++

host code

Offline LLVM

flow modified to

accept C++

AMP syntax

Hand written Used

http://llvm.org/devmtg/2012-11/Sharlet-ShevlinPark.pdf

34 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

APARAPI

 Runtime offload of Java to the GPU

– Currently compiles down to OpenCL C

 Uses standard Java types

 Reflection-based compilation

– Class files trigger generation of GPU code by analysing their own Java bytecode

– No language syntax additions but similar benefits

 Some scope limitations

– The compiler cannot see code before and after the dispatch call

– Extra copy overhead as a result of the lack of global visibility

 Capabilities are restricted by its OpenCL target and by the goal of creating a simple path for data-parallel

loop offload for Java

35 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

APARAPI

To run the following computation on the GPU:
final float inA[] = // get a float array of data from somewhere
final float inB[] = // get a float array of data from somewhere (inA.length==inB.length)
final float result = new float[inA.length];

for (int i=0; i<array.length; i++){
 result[i]=intA[i]+inB[i];
}

We can refactor the sequential loop to the following form:
Kernel kernel = new Kernel(){
 @Override public void run(){
 int i= getGlobalId();
 result[i]=intA[i]+inB[i];
 }
};
Range range = Range.create(result.length);
kernel.execute(range);

The API will become simpler with the addition of lambdas in the near future

Kernel compilation will

be triggered at this point

36 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

CAPS OPENACC/OPENHMPP MODELS

Diagram and code example from www.caps-enterprise.com

#pragma acc loop gang(64)
for (int i = 1; i < M - 1; ++i) {
 #pragma acc loop worker(128)
 for (int j = 1; j < N - 1; ++j) {
 B[i][j] =
 c11 * A[i - 1][j - 1] +
 c12 * A[i + 0][j - 1] +
 c13 * A[i + 1][j - 1] +
 c21 * A[i - 1][j + 0] +
 c22 * A[i + 0][j + 0] +
 c23 * A[i + 1][j + 0] +
 c31 * A[i - 1][j + 1] +
 c32 * A[i + 0][j + 1] +
 c33 * A[i + 1][j + 1];
 }
}

37 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

IS THIS NOT ENOUGH?

 All of the models basically follow the same OpenCL execution model

– Big map operations

– No explicit concurrency

– No meaningful communication

 The question is what we need to add to support a wider set of models

– Programming models that CPU programmers are used to using

– Programming models that scale

38 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AGENDA OR CALL-OUTS

OpenCL, the state of the art

Building on OpenCL

Current limitations

Creating a portable intermediate language

Hiding OpenCL away

The future of supporting a variety of runtimes

39 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

THE CURRENT STATE OF THE ART

 I can‟t talk about the next version of OpenCL

– There are many other people in this room who also can‟t talk about the next version of OpenCL…

 However, I can talk a little about HSA, on top of which AMD will be implementing OpenCL

– Although this is also a standard in development

 HSA is an architected layer specifying:

– A memory model for interacting components in the platform with full shared virtual memory capabilities

– A queue specification in user-space such that any device in the platform can write to another device‟s queues in a

standardised way

– A portable intermediate language (HSAIL) that is intended to be at a lower level than SPIR such that most

optimisations have been performed in the high level compiler and the runtime compilation time is small.

 The definition acts at a different layer from OpenCL

– It is lower level

– It uses architected shared-memory interfaces

40 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

HSA INTERMEDIATE LAYER - HSAIL

 Explicitly parallel

– Designed for data parallel programming

 Support for exceptions, virtual functions, and other high level language features

 Syscall methods

– GPU code can call directly to system services, IO, printf, etc

41 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

HSA MEMORY MODEL

 Designed to be compatible with C++11, Java and .NET Memory Models

 Relaxed consistency memory model for parallel compute performance

 Loads and stores can be re-ordered by the finalizer

 Visibility controlled by:

– Load.Acquire, Load.Dep, Store.Release

– Barriers

 A strict memory model allows us to reason about correctness of communicating processes

 It also provides a stronger basis for academic research

– A stronger underlying model offers more scope for innovation on top of the underlying model.

42 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

HSA ENABLES DEVICE TO DEVICE ENQUEUE

 HSA queues sit in user memory so both host and device can write new commands to them

 Popular pattern for task- and data-parallel programming on SMP systems today

 Characterized by:

– A work queue per core

– Runtime library that divides large loops into tasks and distributes to queues

– A work stealing runtime that keeps the system balanced

 HSA is designed to extend this pattern to run on heterogeneous systems

43 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

Application / Runtime

FUTURE COMMAND AND DISPATCH CPU <-> GPU

B A F E D C G

CPU2 CPU1 GPU

44 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

DO WE NEED CONTEXT SWITCHING?

 Yes and no…

 For Quality of service, we need context switching

– If we don‟t have firm control of software running on the machine

– If we need to guarantee that software doesn‟t harm other software – similar arguments to those used for VM

 For other, simpler tasks, for fine grained switching, maybe context switching isn‟t the right way go go

– How much of either true context switching or support for other forms do we need to add to OpenCL?

45 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

AMD‟S HSA-DRIVEN FEATURE ROADMAP

System

Integration

GPU compute

context switch

GPU graphics

pre-emption

Quality of Service

Extend to

Discrete GPU

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU and

GPU

GPU Compute C++

support

User mode schedulng

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common Manufacturing

Technology

46 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

TAKE A SPECIFIC GPU – THE AMD RADEON™ HD7970

47 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

 The scalar core manages a large number of threads

– Each thread requires its set of vector registers

– Significant register state for both scalar and vector storage

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the AMD HD7970

 64kB of LDS, OpenCL‟s “__local”

THE SIMD CORE

48 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

TAKE A SPECIFIC GPU – THE AMD RADEON™ HD7970

49 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

TOO SIMPLE?

 Look at fine-grained tasking systems on the CPU

– Cilk, ConcRT, TBB

 Various subtly different execution model:

– Cooperatively switches between tasks

– Supports continuations, cooperative locks, passing of exceptions

– Context switching underlying fabric

– We can‟t implement them all directly in OpenCL

 We overlay those fine-grained tasks on long running threads

– Those threads would end up context switching!

– CPU-like architectures without hardware dispatch already implement OpenCL this way

 Then use the same underlying task architecture to portably support efficient reductions

– We don‟t actually want to launch a huge number of workgroups

– We want to launch as few workgroups as possible to keep the machine occupied and carry a reduction variable

50 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

CONTEXT SWITCHING TASK MANAGEMENT THREADS

Context switch Context switch

Parallel

Task

Parallel

Task

Parallel

Task
Parallel

Task

Parallel

Task

Parallel

Task

Parallel

Task

Parallel

Task

Parallel

Task

Parallel

Task

Here we have to

switch the owning

thread

Elsewhere we just let

it die and restart it.

There is no state to

store.

51 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

CAN WE ADAPT OPENCL‟S EXECUTION MODEL IN THIS DIRECTION?

 We want to support a wide range of models sitting on top of OpenCL

 We do not know how all those models work

– How can we? We have to allow runtime and compiler developers to innovate.

 So can we adapt the OpenCL execution model to support such techniques?

52 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

THE PATH FORWARD

Adapt OpenCL’s execution model

Offer as many underlying models as

possible

Allow programmable control of the

execution patterns

Expose OpenCL scheduling in a more

flexible manner

Minimise OpenCL‘s execution model

Explicitly support constructs to enable

software scheduling on top of the

underlying OpenCL schedule

Allow a software scheduler to

communicate with the execution model

for efficient execution

Enable software to avoid context

switching, but offer the benefits context

switching would provide

53 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

INFRASTRUCTURE SUPPORT

kernel managementTask(WorkQueue &wq, Yielder &y, TaskQueue &tq) {

 while(!told to finish) {

 Task t = tq.pop();

 t.run();

 if(y.yield() && get_global_id(0) == 0) {

 wq.push(self, NDRange(fill));

 exit();

 }

 }

}

P
a
ra

lle
l

T
a
s
k

P
a
ra

lle
l

T
a
s
k

P
a
ra

lle
l

T
a
s
k

P
a
ra

lle
l

T
a
s
k

54 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

FLATTENING NESTED DATA PARALLEL CODE CAN BE MESSY

 What do we do when we manually write that in OpenCL?

– We launch a workgroup for each block

– Some work items in the workgroup that may or may not match the number of iterations we need to do

– Each work item will contain the same serial loop

• Will the compiler realize that this is the same loop across the group?

 We‟ve flattened a clean nested algorithm

– From a 2D loop + a serial loop + a 2D loop

– Into a 4D blocked iteration space

– Spread the serial loop around the blocks

– It‟s a messy projection... surely not the best way?

 How far do we want to take the work-group execution model?

55 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

SOMETHING LIKE…

for(int y = 0; y < YMax; ++y){ // for each macroblock in Y

 for(int x = 0; x < XMax; ++x) { // for each macroblock in X

 while(not found optimal match) {

 for(int y2 = 0; y2 < 16; ++y2) {

 for(int x2 = 0; x2 < 16; ++x2) {

 diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty);

 // use diff… maybe sum of squared differences

 }

 }

 }

 }

}

56 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

SOMETHING LIKE… KERNELIZATION

kernel void motionVector(…) {

 int x = get_global_id(0);

 int y = get_global_id(1);

 int x2 = get_local_id(0);

 int y2 = get_local_id(1);

 while(not found optimal match) {

 diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty);

 // use diff… maybe sum of squared differences

 }

}

OpenCL mapping

ended up doing a

loop transpose

57 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

ABSTRACT THE WORKGROUP SIZE FROM THE COMPUTATION?

scalar kernel void motionVector(…) {

 int x = get_group_id(0);

 int y = get_group_id(1);

 while(not found optimal match) {

 parallel_for(int y2 = 0; y2 < 16; ++y2) {

 parallel_for(int x2 = 0; x2 < 16; ++x2) {

 diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty);

 // use diff… maybe sum of squared differences

 }

 }

 }

 }

}

Leave the loop transpose for

later in the tool chain.

More readable code.

58 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

YIELD AND STRUCTURED PARALLELISM IN THE IR AND RUNTIME

 Operations such as these can be integrated into SPIR or, more likely, called from SPIR as standard

library operations

 The runtime would need functionality to

– Describe yieldable dispatches

– Enable dispatch-to-fill; ie to issue workgroups while there is space to issue them, and do so repeatedly until the

task terminates

– Launch in terms of threads (or small groups of threads) rather than work-items

 The IR might also carry abstractions of the parallelism of a workgroup

– Allow the tool chain to map to vector units as necessary

– Carry as much information as late in the tool chain as possible

– Better performance portability

59 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

OVERALL GOALS

Think of OpenCL as an infrastructure

Make decisions based on OpenCL as a

compiler/runtime target, not a programmer target

Make OpenCL a simple, efficient target for

implementing complicated functionality rather

than embedding complicated functionality inside

OpenCL

We need to provide concurrency guarantees,

quality of service, reasons for a runtime vendor to

believe that task graphs they implement will

behave in a manageable way when running on

the OpenCL infrastructure

Investigate runtimes that developers use

What functionality do these runtimes support?

What would we need to add to OpenCL to support

them?

What should we not do to OpenCL that would

complicate the mapping

Ensure that SPIR can represent the upstream models

while maintaining enough information to allow portable

mapping

Questions?

61 OPENCL AS AN INFRASTRUCTURE | MAY 14, 2013 | PUBLIC

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY

INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF

ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.

in the United States and/or other jurisdictions. SPEC is a registered trademark of the Standard Performance Evaluation Corporation (SPEC). Other names are

for informational purposes only and may be trademarks of their respective owners.

