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WHAT IS OPENCL? 

 

 

 The basic separation of a host from a set of devices 

– Multiple devices individually versioned 

– Multiple vendor runtimes accessible 

 

 Designed to ensure a degree of backward 

compatibility 

– Future proofing of applications built on top of OpenCL 

– As long as the right queries are used to perform version 

checks! 

Platform model 
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WHAT IS OPENCL? 

 Specifies the interpretation we must apply to a device 

 

 Devices consist of abstract computational elements 

– Compute units 

– Processing elements 

 

 Compute units generally map to larger structural 

entities with caches 

– Cores, really 

 

 Processing elements often map to SIMD lanes 

– The standard specifies that SIMD execution on 

processing elements is valid 

Platform model 
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WHAT IS OPENCL? 

 

 Work is abstracted as a command 

– Commands follow a specific execution model 

– Communication between commands follow a specific 

memory model 

 

 Commands as issued by the host 

– To a specific queue 

– The queue is associated with a given device 

– There is no explicit control over compute units 

Platform model 
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Execution model – device side 

WHAT IS OPENCL? 

 Slightly hierarchical data-parallel 

execution 

– Work-items in work-groups 

 Work groups execute completely 

independently  

 Within a work-group work-items may 

communicate and synchronize 

– Using barrier synchronization primitives 

 Work-items within a work-group must 

thus, in the presence of barriers: 

– execution concurrently 

– make forward progress 

 Note that work-items need ONLY be 

concurrent in the presence of barriers 

1024 

1
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4
 

Synchronization between work-

items possible only within 

workgroups: 

barriers and memory fences 

Cannot synchronize 

outside of a workgroup 
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Execution model – host side 

WHAT IS OPENCL? 

 

 

 Command queues allow us to manage data and perform computations on a 

given device 

 

 Can be in-order or out-of-order (within certain limits) 

 

 Can only be filled from the host side 

 

 While out-of-order queues may allow for concurrent command execution, they 

do not require it 

Command queues 
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Memory model 

WHAT IS OPENCL? 

 

 Structured 

– Data is contained both in host-side buffers and in 

device-side address spaces 

– Implementations can use more efficient access modes 

the more information they have about the data 

 

 Intentionally weak 

– Provides maximum portability to a range of 

architectures 

– Allows architectures to optimise location of data 

 

 Memory consistency is defined ONLY at work-group 

level and at synchronization points 

 

 

Workgroup 

Work-Item 

Computer Device 

Work-Item 

Workgroup 

Work-Item Work-Item 

Host 

Private 
Memory 

Private 
Memory 

Private 
Memory 

Private 
Memory 

Local Memory Local Memory 

Global/Constant Memory 

Host Memory 
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Programming model 

WHAT IS OPENCL? 

 OpenCL‟s programming model comprises two sides: 

– The host API 

– The OpenCL C device programming language 

 

 The host API is a standard C API that exposes the required functionality of the OpenCL standard 

 

 The OpenCL C programming language is a C99-derived language with embedded C-style address 

spaces 

– Run-time compiled from a string 

– Represents one instance in an SPMD execution that may be mapped to SIMD 

 

 Abstractly OpenCL defines two models: 

– Data-parallel and task-parallel 

– Data-parallel is the execution model described earlier. Task-parallel is the launch of a single work-item domain 
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Language Adoption  / Programmability (Source:  LangPop.com) 

Python 

29.8% 

Java 

25.8% 

Ruby 

9.6% 

C++ 

12.6% 

OpenCL 

Bubble size represents 2013 new project starts 
Source:  CodeEval.com 

Javascript 

3.9% 

HOWEVER… 

C# 

2.5% 
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STANDARD LOW-LEVEL OPENCL USE 
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C++ BINDINGS AND RELATED APIS 

 Official OpenCL C++ bindings. Various other C++ wrapper interfaces 

OpenCL 

Host API 

OpenCL 

kernel 

code 

OpenCL 

Runtime 
Programmer 

OpenCL 

C string 

C/C++ 

host code 

Function-like 

dispatch, 

reference 

counting, 

default 

arguments 

Hand written Used 
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LIBRARIES 

 AMD APP BLAS/FFT, ViennaCL etc 

OpenCL 

Host API 

OpenCL 

kernel 

code 

OpenCL 

Runtime 
Programmer 

C/C++ 

host code 

Hand written Used 

Kernels, 

dispatch, data 

management, 

performance 

tuning 
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BOLT 

 C++ template library for OpenCL 

OpenCL 

Host API 

OpenCL 

kernel 

code 

OpenCL 

Runtime 
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string 

defines 
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algorithm 
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BOLT – CLARIFICATION EXAMPLE 

BOLT_FUNCTOR(Functor, 

  struct Functor { 

    float _a; 

    Functor(float a) : _a(a) {}; 

    float operator() (const float &xx, const float &yy) { 

      return _a * xx + log(yy) + sqrt(xx); 

    }; 

  }; 

); 

… 

 

Functor func(10.0) 

std::transform(A.begin(), A.end(), B.begin(), Z0.begin(), func); 

bolt::cl::transform(A.begin(), A.end(), B.begin(), Z1.begin(), func); 
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LACK OF C++ 

 Static C++ features 

– Generic kernels/templated operations 

– A sophisticated type system 

– Overloading 

– Subclassing 

 

 Dynamic C++ features 

– Virtual functions/function pointers 

– Exceptions 

 

 It‟s true that AMD has a static C++ kernel language 

– In the long term, is a runtime-compiled C++ kernel language the right way to go? 

– What do people really want from C++? 
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LACK OF SINGLE-SOURCE 

 The real use for C++? 

– Passing types across kernel boundaries 

– Templating device code from host code 

 

 Cleaner, integrated models for new programmers 

– Simple dispatch APIs 

– Wrapper libraries can provide a lot of this 

 

 Type safety of the kernel dispatch mechanism 

– CLU is an approach for fixing this 

 

 Is this something that is worth standardising, or is something that is worth supporting?  

– Or something in between. 
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HOST-DRIVEN EXECUTION MODEL 

 Host->Device->Host turnaround time can be slow 

– When the device needs to generate more work this cycle can kill performance 

 

 The fixed execution hierarchy cleanly abstracts a wide range of machines 

– It matches none well 

– Consider that many of the devices use vector execution, but this is poorly abstracted 

 

 No well-defined concurrency between workgroups 
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WEAK MEMORY MODEL 

 Like C before C11, OpenCL C has a very weakly defined memory model 

– Weak in terms of consistency of operations 

– Weak in terms of consistency of implementations 

 

 The points at which memory is synchronized vary from one implementation to another 

– Atomic operations may flush the cache or only ensure that the specific atomic operation is visible 

– Acquiring a lock may fences memory operations between the acquire and release of the lock but other 

implementations may allow considerable flexibility in memory reorderings 

 

 In essence, OpenCL is not designed for communication between workgroups 

– Therefore any such behaviour is implementation-defined 

– This makes it hard to build on 
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ISSUES OF VECTOR EXECUTION AND FORWARD PROGRESS 

 There is a lack of guarantees about forward progress in GPU schedulers 

 

 Worse, still, the treatment of „SIMT‟ has serious correctness issues in the presence of synchronization 

– Even if we fix the memory model 

 

 As a trivial example: 
while(!acquire_lock(&l)) {} 

// Do some work 

release_lock(l); 

 

 If two work-items are passing through the block simultaneously 

– One acquires the lock 

– The others are spinning in the while loop 

– The acquirer can not progress, do the work and release 

 

 Deadlock through SIMD! (This is why SIMT is not threads: it‟s a software abstraction on top of threads) 
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OPENCL C AS THE ONLY ENTRY POINT DOESN‟T SCALE 

 Outputting C is not a perfect compiler solution 

– Therefore using OpenCL C as an intermediate representation is imperfect 

 

 Many developers don‟t want to runtime compile OpenCL C 

– Delays error reporting until very late in the process 

– Requires storing of source code in the final application – poor IP protection 

 

 That‟s not to say OpenCL C doesn‟t have its place 

– Runtime compilation has great value under some circumstances 

– A low-level entry point to the system is vital or experimentation and tuning 
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ENTRY POINTS: STANDARD PORTABLE INTERMEDIATE REPRESENTATION 

 A proposed binary representation for OpenCL C programs 

 

 Designed to be portable across OpenCL vendors 

– One OpenCL vendor‟s toolchain might be used to generate the intermediate representation 

– Another vendor‟s toolchain would consume it 

 

 Possibly more importantly allows third party tool chains to generate a well-defined target 

– Innovation on top of the OpenCL framework 

– New programming models may target SPIR 

– The generated SPIR and host API calls may then execute on the underlying OpenCL runtime 

– Possible efficiency gains by removing the IR->C->IR transformation 

 

 Defines the IR and rules for consumption 

– Generation is undefined: if it were not, innovation would be stifled 
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STANDARD PORTABLE INTERMEDIATE REPRESENTATION 

SPIR 

binary 
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runtime (eg 
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intermediate 

language 
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Runtime Compile time 
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binary 
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PURPOSE 

 Expand the set of languages that target OpenCL 

runtimes 

 Improve the ease of use of the standard 

 Enable innovation 

Enable third party 

compilers 

 OpenCL C‟s plain text kernels must be stored 
somewhere 

– A common ISV concern 

– Mitigated only by compiling binaries for multiple 
targets offline: no scaling 

 SPIR is a binary representation of the kernel 
– Minimal optimisation so the runtime can still optimise 

for the target 

– Some degree of obfuscation 

 

Remove the need to 

release plain text 

kernel code 
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ONLY DEFINE CONSUMPTION 

SPIR 

binary 

OpenCL C 

compiler at 

runtime 

Offline 

OpenCL C 

Compiler 

Third party 

compiler 

Define the intermediate representation and its mapping to the concepts in the OpenCL standard. 

Leave SPIR production to innovative ISVs (and we as OpenCL runtime vendors can support it too) 

Vendor-

specific 

intermediate 

language 

Device ISA 

SPIR 

binary 

SPIR loader 



30 OPENCL AS AN INFRASTRUCTURE   |   MAY  14, 2013   |   PUBLIC 

BASED ON LLVM-IR 

 SPIR is based on LLVM-IR 

– The current public provisional specification defines SPIR in terms of LLVM 3.1 

 

 LLVM-IR is already used by tool chains, so was close to being suitable 

– The goal was to make as small a set of modifications as possible to the standard 

– Achieve portability without major change 

– Maintain an easy path to future compatibility 

– Track LLVM‟s built-in upgrade path to future versions of the infrastructure 

 

 To be portable SPIR has to define the mapping from LLVM-IR types to OpenCL C types 

 

 Add calling conventions and a new build target 
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STATUS OF SPIR 

 Provisional specification released in November 2012  

– Aim to collect feedback from the community 

 

 There is an open source SPIR producer under development as part of Clang. 

 

 The development of SPIR consumption is underway by AMD and other OpenCL vendors. 

 

 However… it is still limited by OpenCL‟s underlying feature set and models 

 

 As OpenCL evolves, SPIR will evolve 
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INTEL®‟S SHEVLIN PARK PROJECT 

 C++AMP-on-OpenCL: a single source compiler 

OpenCL 

Host API 

OpenCL 

kernel 

code 

OpenCL 

Runtime 
Programmer 

C/C++ 

host code 

Offline LLVM 

flow modified to 

accept C++ 

AMP syntax 

Hand written Used 

http://llvm.org/devmtg/2012-11/Sharlet-ShevlinPark.pdf 
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APARAPI 

 Runtime offload of Java to the GPU 

– Currently compiles down to OpenCL C 

 

 Uses standard Java types 

 

 Reflection-based compilation 

– Class files trigger generation of GPU code by analysing their own Java bytecode 

– No language syntax additions but similar benefits 

 

 Some scope limitations 

– The compiler cannot see code before and after the dispatch call 

– Extra copy overhead as a result of the lack of global visibility 

 

 Capabilities are restricted by its OpenCL target and by the goal of creating a simple path for data-parallel 

loop offload for Java 
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APARAPI 

To run the following computation on the GPU: 
final float inA[] = .... // get a float array of data from somewhere 
final float inB[] = .... // get a float array of data from somewhere (inA.length==inB.length) 
final float result = new float[inA.length]; 
 
for (int i=0; i<array.length; i++){ 
    result[i]=intA[i]+inB[i]; 
} 

 

We can refactor the sequential loop to the following form: 
Kernel kernel = new Kernel(){ 
   @Override public void run(){ 
      int i= getGlobalId(); 
      result[i]=intA[i]+inB[i]; 
   } 
}; 
Range range = Range.create(result.length);  
kernel.execute(range); 

 

The API will become simpler with the addition of lambdas in the near future 
 

Kernel compilation will 

be triggered at this point 
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CAPS OPENACC/OPENHMPP MODELS 

Diagram and code example from www.caps-enterprise.com 

#pragma acc loop gang(64) 
for (int i = 1; i < M - 1; ++i) { 
   #pragma acc loop worker(128) 
   for (int j = 1; j < N - 1; ++j) { 
      B[i][j] =  
         c11 * A[i - 1][j - 1] +  
         c12 * A[i + 0][j - 1] +  
         c13 * A[i + 1][j - 1] +  
         c21 * A[i - 1][j + 0] +  
         c22 * A[i + 0][j + 0] +  
         c23 * A[i + 1][j + 0] +  
         c31 * A[i - 1][j + 1] +  
         c32 * A[i + 0][j + 1] +  
         c33 * A[i + 1][j + 1]; 
   } 
} 
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IS THIS NOT ENOUGH? 

 All of the models basically follow the same OpenCL execution model 

– Big map operations 

– No explicit concurrency 

– No meaningful communication 

 

 The question is what we need to add to support a wider set of models 

– Programming models that CPU programmers are used to using 

– Programming models that scale 
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THE CURRENT STATE OF THE ART 

 I can‟t talk about the next version of OpenCL 

– There are many other people in this room who also can‟t talk about the next version of OpenCL… 

 

 However, I can talk a little about HSA, on top of which AMD will be implementing OpenCL 

– Although this is also a standard in development 

 

 HSA is an architected layer specifying: 

– A memory model for interacting components in the platform with full shared virtual memory capabilities 

– A queue specification in user-space such that any device in the platform can write to another device‟s queues in a 

standardised way 

– A portable intermediate language (HSAIL) that is intended to be at a lower level than SPIR such that most 

optimisations have been performed in the high level compiler and the runtime compilation time is small. 

 

 The definition acts at a different layer from OpenCL 

– It is lower level 

– It uses architected shared-memory interfaces 
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HSA INTERMEDIATE LAYER - HSAIL 

 

 Explicitly parallel 

– Designed for data parallel programming 

 

 Support  for exceptions, virtual functions,  and other high level language features 

 

 Syscall methods  

– GPU code can call directly  to system services, IO, printf, etc 
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HSA MEMORY MODEL 

 Designed to be compatible with C++11, Java and .NET Memory Models 

 

 Relaxed consistency memory model for parallel compute performance 

 

 Loads and stores can be re-ordered by the finalizer  

 

 Visibility controlled by: 

– Load.Acquire, Load.Dep, Store.Release 

– Barriers 

 

 A strict memory model allows us to reason about correctness of communicating processes 

 

 It also provides a stronger basis for academic research 

– A stronger underlying model offers more scope for innovation on top of the underlying model. 
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HSA ENABLES DEVICE TO DEVICE ENQUEUE 

 HSA queues sit in user memory so both host and device can write new commands to them 

 

 Popular pattern for task- and data-parallel programming on SMP systems today 

 

 Characterized by: 

– A work queue per core 

– Runtime library that divides large loops into tasks and distributes to queues 

– A work stealing runtime that keeps the system balanced 

 

 HSA is designed to extend this pattern to run on heterogeneous systems 
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Application / Runtime 

FUTURE COMMAND AND DISPATCH CPU <-> GPU 

B A F E D C G 

CPU2 CPU1 GPU 



44 OPENCL AS AN INFRASTRUCTURE   |   MAY  14, 2013   |   PUBLIC 

DO WE NEED CONTEXT SWITCHING? 

 Yes and no…  

 

 For Quality of service, we need context switching 

– If we don‟t have firm control of software running on the machine 

– If we need to guarantee that software doesn‟t harm other software – similar arguments to those used for VM 

 

 For other, simpler tasks, for fine grained switching, maybe context switching isn‟t the right way go go 

– How much of either true context switching or support for other forms do we need to add to OpenCL? 
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AMD‟S HSA-DRIVEN FEATURE ROADMAP 
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TAKE A SPECIFIC GPU – THE AMD RADEON™ HD7970 
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 The scalar core manages a large number of threads 

– Each thread requires its set of vector registers 

– Significant register state for both scalar and vector storage 

– 10 waves per SIMD, 40 waves per CU (core), 2560 work items per CU, 81920 work items on the AMD HD7970 

 64kB of LDS, OpenCL‟s “__local” 

THE SIMD CORE 
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TAKE A SPECIFIC GPU – THE AMD RADEON™ HD7970 
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TOO SIMPLE? 

 Look at fine-grained tasking systems on the CPU 

– Cilk, ConcRT, TBB 

 

 Various subtly different execution model: 

– Cooperatively switches between tasks 

– Supports continuations, cooperative locks, passing of exceptions 

– Context switching underlying fabric 

– We can‟t implement them all directly in OpenCL 

 

 We overlay those fine-grained tasks on long running threads 

– Those threads would end up context switching! 

– CPU-like architectures without hardware dispatch already implement OpenCL this way 

 

 Then use the same underlying task architecture to portably support efficient reductions 

– We don‟t actually want to launch a huge number of workgroups 

– We want to launch as few workgroups as possible to keep the machine occupied and carry a reduction variable 
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CONTEXT SWITCHING TASK MANAGEMENT THREADS 
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CAN WE ADAPT OPENCL‟S EXECUTION MODEL IN THIS DIRECTION? 

 We want to support a wide range of models sitting on top of OpenCL 

 

 We do not know how all those models work 

– How can we? We have to allow runtime and compiler developers to innovate. 

 

 So can we adapt the OpenCL execution model to support such techniques? 
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THE PATH FORWARD 

Adapt OpenCL’s execution model 

 

Offer as many underlying models as 

possible 

 

Allow programmable control of the 

execution patterns 

 

Expose OpenCL scheduling in a more 

flexible manner 

Minimise OpenCL‘s execution model 

 

Explicitly support constructs to enable 

software scheduling on top of the 

underlying OpenCL schedule 

 

Allow a software scheduler to 

communicate with the execution model 

for efficient execution 

 

Enable software to avoid context 

switching, but offer the benefits context 

switching would provide  
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INFRASTRUCTURE SUPPORT 

 

kernel managementTask(WorkQueue &wq, Yielder &y, TaskQueue &tq) { 

    while(!told to finish) { 

        Task t = tq.pop(); 

        t.run(); 

        if( y.yield() && get_global_id(0) == 0 ) { 

            wq.push(self, NDRange(fill)); 

            exit(); 

        } 

    } 

} 
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FLATTENING NESTED DATA PARALLEL CODE CAN BE MESSY 

 What do we do when we manually write that in OpenCL? 

– We launch a workgroup for each block 

– Some work items in the workgroup that may or may not match the number of iterations we need to do 

– Each work item will contain the same serial loop 

• Will the compiler realize that this is the same loop across the group? 

 

 We‟ve flattened a clean nested algorithm 

– From a 2D loop + a serial loop + a 2D loop 

– Into a 4D blocked iteration space 

– Spread the serial loop around the blocks 

– It‟s a messy projection... surely not the best way? 

 

 How far do we want to take the work-group execution model? 
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SOMETHING LIKE… 

 

for( int y = 0; y < YMax; ++y ){ // for each macroblock in Y 

  for( int x = 0; x < XMax; ++x ) { // for each macroblock in X 

 

    while( not found optimal match ) { 

 

      for( int y2 = 0; y2 < 16; ++y2 ) { 

        for( int x2 = 0; x2 < 16; ++x2 ) { 

          diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty); 

          // use diff… maybe sum of squared differences 

        } 

      } 

    } 

  } 

} 
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SOMETHING LIKE… KERNELIZATION 

 

kernel void motionVector(…) { 

    int x = get_global_id(0); 

    int y = get_global_id(1); 

    int x2 = get_local_id(0); 

    int y2 = get_local_id(1); 

 

    while( not found optimal match ) { 

        diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty); 

        // use diff… maybe sum of squared differences 

    } 

} 

OpenCL mapping 

ended up doing a 

loop transpose 
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ABSTRACT THE WORKGROUP SIZE FROM THE COMPUTATION?  

 

scalar kernel void motionVector(…) { 

    int x = get_group_id(0); 

    int y = get_group_id(1); 

    while( not found optimal match ) { 

 

      parallel_for( int y2 = 0; y2 < 16; ++y2 ) { 

        parallel_for( int x2 = 0; x2 < 16; ++x2 ) { 

          diff = block(x2 + 16*x, y2 + 16*y) – target(x2 + tx, y2 + ty); 

          // use diff… maybe sum of squared differences 

        } 

      } 

    } 

  } 

} 

Leave the loop transpose for 

later in the tool chain. 

More readable code. 
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YIELD AND STRUCTURED PARALLELISM IN THE IR AND RUNTIME 

 Operations such as these can be integrated into SPIR or, more likely, called from SPIR as standard 

library operations 

 

 The runtime would need functionality to 

– Describe yieldable dispatches 

– Enable dispatch-to-fill; ie to issue workgroups while there is space to issue them, and do so repeatedly until the 

task terminates 

– Launch in terms of threads (or small groups of threads) rather than work-items 

 

 The IR might also carry abstractions of the parallelism of a workgroup 

– Allow the tool chain to map to vector units as necessary 

– Carry as much information as late in the tool chain as possible 

– Better performance portability 
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OVERALL GOALS 

Think of OpenCL as an infrastructure 

 

Make decisions based on OpenCL as a 

compiler/runtime target, not a programmer target 

 

Make OpenCL a simple, efficient target for 

implementing complicated functionality rather 

than embedding complicated functionality inside 

OpenCL 

 

We need to provide concurrency guarantees, 

quality of service, reasons for a runtime vendor to 

believe that task graphs they implement will 

behave in a manageable way when running on 

the OpenCL infrastructure 

Investigate runtimes that developers use 

 

What functionality do these runtimes support? 

 

What would we need to add to OpenCL to support 

them? 

 

What should we not do to OpenCL that would 

complicate the mapping 

 

Ensure that SPIR can represent the upstream models 

while maintaining enough information to allow portable 

mapping 

 



Questions? 
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