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HSA AND THE MODERN GPU 

 In this brief talk we will cover three topics: 

– Changes to the shader core and memory system 

– Changes to the use of pointers 

– Architected definitions to use these new features 

 

 We’ll look both at how the hardware is becoming more flexible and give some idea about why 



The HD7970 and Graphics Core Next 
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AMD RADEON™ HD7970 - GLOBALLY 

 A multi-core superscalar parallel processing engine 

 

 Two command processors 

– Capable of processing two command queues concurrently 

 

 Full read/write cache hierarchy 

 

 SIMD cores grouped in fours 

– Scalar data and instruction cache per cluster 

– L1, LDS and scalar processor per core 

 

 Up to 32 cores / compute units 
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COMMAND PROCESSORS 

 Consume input packets 

– Compute packets for most of us, (currently) generated from OpenCL™  

commands 

– Graphics packets follow a similar path 

 

 Multiple queues processed 

– So multiple queues can be in progress simultaneously 

– Enables concurrent execution of kernels 

 

 Command processor instructs a scheduler to generate work 

– Scheduler generates work to place on the machine as capacity is 

available 

– Work is generated in the form of wavefronts 

– A wavefront is analogous to a CPU thread and represents 64 OpenCL 

work items, or 64 parallel instances of the OpenCL kernel program as 

written. 
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 The heart of Graphics Core Next: 

– A scalar processor with four 16-wide vector units 

– Each lane of the vector unit is a full single precision floating point unit 

 Caches and a very large register file 

64kB Registers
64kB Registers

64kB Registers

64kB Local Data Share: 32 banks with integer atomic units

16kB 
read-write 
L1 cache

Scalar
processor

64kB vector registers
8kB scalar 
registers

THE SIMD CORE 
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MAPPING FROM THE PROGRAMMING LEVEL 

 We often view GPU programming as a set of independent threads, more reasonably known as “work 
items” in OpenCL: 
float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

 

 Which we flatten via a sequence of compilation steps to a GPU ISA:  v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 
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SIMD EXECUTION 

 You are probably aware that in reality, work items aren’t threads. 

 

 The majority of modern GPUs follow a SIMD architecture  

– Each work item describes a lane of execution 

– Multiple work items execute together in SIMD fashion with a single program counter 

– Some clever mask management to handle divergent control flow across the vector 

 

 So trivially, you might imagine something like the following: 

v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 

v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 

v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 
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64kB Local Data Share: 32 banks with integer atomic units

16kB 
read-write 
L1 cache

Scalar
processor

Instruction 
decode etc

v_cmp_gt_f32 r0,r1 

 

 

 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

 

 

 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

ACTUALLY, A LITTLE MORE INTERESTING THAN THAT 

 Look closely at that code: 

 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

 

 

 

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

 

 

 

s_mov_b64 exec,s0 

v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 

Scalar instructions Vector instructions 
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64kB 
read-write 
L1 cache

Instruction 
decode etc

512kB 
read-write 
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar 
ALUs, branch 
control etc)

FAMILIAR? 

 If we add the frontend of the core… 

64kB Local Data Share: 32 banks with integer atomic units

16kB 
read-write 
L1 cache

Scalar
processor

Instruction 
decode etc

“Graphics Core Next” core 

“Barcelona” core 

v_cmp_gt_f32 r0,r1 //a > b, establish VCC 

s_mov_b64 s0,exec //Save current mask 

s_and_b64 exec,vcc,exec //Do “if” 

s_cbranch_vccz label0 //Branch if all fail 

v_sub_f32 r2,r0,r1 //result = a – b 

v_mul_f32 r2,r2,r0 //result=result * a 

 

How would an implicitly vectorized program look mapped onto here using SSE 

instructions? 

 

So different? 
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a = 0.0, b = 1.0 a = 2.0, b = 1.0 a = 4.0, b = 2.0 a = 2.0, b = 3.0 

EXECUTION OVER A VECTOR 

 Taking the same example, running over a fictional 4-element vector (the HD7970 uses a 64-element 

vector execution): 
float fn0(float a,float b) 

{ 

 if(a>b) 

  return((a-b)*a); 

 else 

  return((b-a)*b); 

} 

 v_cmp_gt_f32 r0,r1 

 

 

 

v_sub_f32    r2,r0,r1 

v_mul_f32    r2,r2,r0 

 

 

 

v_sub_f32    r2,r1,r0 

v_mul_f32    r2,r2,r1 

 

s_mov_b64       s0,exec 

s_and_b64       exec,vcc,exec 

s_cbranch_vccz  label0 

 

 

label0: 

s_andn2_b64     exec,s0,exec 

s_cbranch_execz label1 

 

 

label1: 

s_mov_b64       exec,s0 

v_cmp_gt_f32 r0,r1 

 

 

 

v_sub_f32    r2,r0,r1 

v_mul_f32    r2,r2,r0 

 

 

 

v_sub_f32    r2,r1,r0 

v_mul_f32    r2,r2,r1 

v_cmp_gt_f32 r0,r1 

 

 

 

v_sub_f32    r2,r0,r1 

v_mul_f32    r2,r2,r0 

 

 

 

v_sub_f32    r2,r1,r0 

v_mul_f32    r2,r2,r1 

v_cmp_gt_f32 r0,r1 

 

 

 

v_sub_f32    r2,r0,r1 

v_mul_f32    r2,r2,r0 

 

 

 

v_sub_f32    r2,r1,r0 

v_mul_f32    r2,r2,r1 

Generates a 

comparison bit 

vector  

Scalar execution 

on the mask sets 

up the “if” branch Execute the 

parallel body of 

the if 

Invert the mask to 

activate the other 

lanes 

If vector condition 

is all 0, skip the if 

with a full branch 

If vector condition 

is all 0, skip the 

else with a full 

branch 

Execute the else 

block over the 

entire vector 
Finally, reset the 

mask to the 

stored value 
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SOME LESSONS FROM THIS 

 We could compile SPMD code in a similar fashion to a modern CPU: 

– In this case using SSE intrinsics 

– Mask operations performed directly on vector registers, but the effect is the same 

v_cmp_gt_f32 r0,r1 

s_mov_b64 s0,exec 

s_and_b64 exec,vcc,exec 

s_cbranch_vccz label0 

 

v_sub_f32 r2,r0,r1 

v_mul_f32 r2,r2,r0 

label0:  

s_andn2_b64 exec,s0,exec 

s_cbranch_execz label1 

 

v_sub_f32 r2,r1,r0 

v_mul_f32 r2,r2,r1 

label1: 

s_mov_b64 exec,s0 

vcc = _mm_cmpeq_epi32(r0, r1); 

exec = s0; 

exec = _mm_and_ps(vcc, exec); 

int a = _mm_movemask_ps(vcc); 

if( a ) goto label0 

r2 = _mm_sub_ps(r0, r1); 

r0 = _mm_mul_ps(r2, r2); 

label0:  

exec = _mm_and_ps(s0, exec); 

int a = _mm_movemask_ps(exec); 

if( a ) goto label1 

r0 = _mm_sub_ps(r1, r2); 

r1 = _mm_mul_ps(r2, r2); 

label1: 

s0 = exec; 
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SOME LESSONS FROM THIS 

 Modern GPUs are not as different from CPUs as marking departments often like to claim 

– The differences are absolutely NOT core count 

– Thread count, is a different story 

 

 The SPMD-on-SIMD or SIMT mapping is almost entirely a tool chain construct 

– It may have some hardware acceleration 

– In general it maps to traditional vector units 
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THE CACHE HIERARCHY 

 Up to 512kB of L2 cache 

– Fully read/write 

– Coherent across the device 

– Associated with the memory interfaces 

 

 16kB of L1 cache per core 

– Fully read/write 

– Write through 

– Relaxed consistency 

 

 Local data share 

– The __local memory in OpenCL 

– Program controlled scratchpad memory 

– Allocations are shared across multiple work-items in an OpenCL work-

group 

– 64kB/core 

 

 Note that there is also 256kB of registers per core 



15 HSA AND THE  MODERN GPU – COMPLEX HPC SPRING SCHOOL  |   JUNE 03, 2013   |   PUBLIC 

MEMORY CONSISTENCY 

 Write through L1 

– Each write will commit to L2 in order 

– Dirty masks ensure merging on write to L2 

– Partially clean lines will be evicted from L1 to force a merge into a full 

cache line from L2 

– Fully dirty lines will not evict so the next read will be directly from L1 

 

 Reads will read from L1 if data is available 

– Must be forced to read from L2 

 

 Implementing consistent memory operations requires the use of 

two primary functions 

– Setting the GLC (globally coherent) bit on the read instruction to 

invalidate the L1 line and read from L2 

– Use the S_WAITCNT instruction to wait for previous memory accesses 

to have completed 

SIMD Core

L1

Memory crossbar

L2 bank 0 L2 bank 1

SIMD Core

L1

SIMD Core

L1
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“TRINITY” APU FLOORPLAN 
32nm SOI, 246mm2, 1.303BN TRANSISTORS 

 
DDR3 Controller Dual Channel DDR3 

Memory Controller 

AMD HD Media Accelerator 

(UVD, AMD Accelerated 

Video Converter) 

A
M

D
 H

D
 M

e
d

ia
 

A
c
c
e
le

ra
to

r 

L2 Cache L2 Cache  

GPU 

Memory 

Scheduler 

AMD Radeon™ GPU 

Dual Core 

x86 Module 

Dual Core 

x86 Module 

Up to 4 

“Piledriver” 

Cores with total 4MB L2 

Display 

PLL 
DP/ 

HDMI® 

HDMI, DisplayPort 1.2, 

DVI controllers 

Display Controller 

Unified Northbridge 

Channel 

PCIe® 
PCIe® 
PCIe® 

PCI Express® I/O — 

24 lanes, optional digital 

display interfaces 

N
o
rt

h
b
ri
d
g
e
 



17 HSA AND THE  MODERN GPU – COMPLEX HPC SPRING SCHOOL  |   JUNE 03, 2013   |   PUBLIC 

THE TRINITY APU MEMORY SYSTEM 

DDR3 System memory

GPU SIMD units

SIMD Core 32kB LDS

SIMD Core 32kB LDS

Piledriver cores

512kB L2 cache

16kB
L1 Data 
cache

x86 core

SIMD Core 32kB LDS

SIMD Core 32kB LDS

SIMD Core 32kB LDS

SIMD Core 32kB LDS

2MB
L2 cache

2MB
L2 cache

16kB
L1 Data 
cache

x86 core

16kB
L1 Data 
cache

x86 core

16kB
L1 Data 
cache

x86 core

Unified Northbridge

 CPU and GPU both have direct paths to 

northbridge 

 The GPU has a second route 

– The Fusion Control Link 

– Allows GPU access to x86 memory space 

– Allows interaction with the CPU caches 

– Supports platform coherent memory 

– Coherency switches from GPU L2 to CPU L2 

for this path 

 Memory allocations are marked 

– Switch between paths at the page level 



Shared Virtual Memory 
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EXPANDING THE MEMORY SYSTEM - HUMA 

 GCN-based devices are more flexible 

– Start to look like CPUs with few obvious shortcomings 

 

 The Trinity APU integrates GPU and CPU cores very closely 

– It can share memory consistently 

– However, that shared memory must be addressed physically 

– It is pinned by the driver – this is limited 

 

 We needed to go a step further on an SoC 

– Memory in those caches should be the same memory used by the “host” CPU 

– In the long run, the CPU and GPU become peers, rather than having a host/slave relationship 
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WHAT DOES THIS MEAN? 

 

 

 

 

 

 

 

 

 

We can store x86 virtual pointers here 

Data stored here is addressed in the same way as that on the CPU 

We can map this into the same virtual address space 

We can perform work on CPU data directly here 
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IOMMUV2 

 The final step is to coherent, virtual and pageable access to  system memory from the GPU’s memory 

controller 

 

 The GPU needs to: 

– Use a virtual x86 address 

– Find that that address in the TLB 

– If the address is not in the TLB, read the page tables to find it 

– If the page is not in memory at all, ask that it be moved in and wait for completion 

 

 The latest discrete GPUs can do this, and Trinity has the beginnings with the IOMMU (input output 

memory management unit) version 2 

– Although Trinity’s GPU cores are an earlier generation and cannot make use of it 
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USE CASES FOR THIS ARE FAIRLY OBVIOUS 

 Pointer chasing algorithms with mixed GPU/CPU use 

 

 Algorithms that construct data on the CPU, use it on the GPU 

 

 Allows for more fine-grained data use without explicit copies 

 

 Covers cases where explicit copies are difficult: 

– Picture OS allocated data that the OpenCL runtime doesn’t know about 

 

 However, that wasn’t quite enough to achieve our goals… 

 

 



Architected Access 



24 HSA AND THE  MODERN GPU – COMPLEX HPC SPRING SCHOOL  |   JUNE 03, 2013   |   PUBLIC 

HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM 

Open Architecture, published specifications 

–HSAIL virtual ISA 

–HSA memory model 

–Architected Queuing Language 

 

HSA system architecture 

– Inviting partners to join us, in all areas 

–Hardware companies 

–Operating Systems 

–Tools and Middleware 

–Applications 

HSA Foundation has been formed 
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ARCHITECTED INTERFACES 

Standardize interfaces to features of the system 

–The compute cores 

–The memory hierarchy 

–Work dispatch 

Standardize access to the device 

–Memory backed queues 

–User space data structures 
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HSA INTERMEDIATE LAYER - HSAIL 

HSAIL is a virtual ISA for parallel programs 

–Finalized to ISA by a runtime compiler or “Finalizer” 

Explicitly parallel 

–Designed for data parallel programming 

Support  for exceptions, virtual functions,   

and other high level language features 

Syscall methods  

–GPU code can call directly  to system services, IO, 

printf, etc 

Debugging support 



27 HSA AND THE  MODERN GPU – COMPLEX HPC SPRING SCHOOL  |   JUNE 03, 2013   |   PUBLIC 

HSA MEMORY MODEL 

Designed to be compatible with C++11, Java and .NET 

Memory Models 

Relaxed consistency memory model for parallel 

compute performance 

Loads and stores can be re-ordered by the finalizer  

Visibility controlled by: 

–Load.Acquire  

–Store.Release 

–Barriers 
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HSA MEMORY MODEL 

 A strict memory model allows us to reason about correctness of communicating processes 

 

 This sort of strengthening of the memory model allows for predictable locks, lock free data structures and 

similar concepts 

– Work item -> work item communication 

– Pipelines 

– Locking of shared data by concurrent work items 

 

 It also provides a stronger basis for academic research 

– While relying on OpenCL concurrency has never been portable, adding the HSA memory model would at least 

make the communication guarantees reliable 
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HSAIL 0.95 PROGRAMMERS REFERENCE MANUAL NOW PUBLIC 

Available at hsafoundation.com 

Announced on May 29th 

Describes: 

– The RISC-like virtual ISA 

– Binary format 

– Memory model 

version 1:0:$full:$small; 

                         

function &get_global_id(arg_u32 %ret_val) (arg_u32 %arg_val0); 

                         

function &abort() (); 

                         

kernel &__OpenCL_vec_add_kernel( 

      kernarg_u32 %arg_val0,  

      kernarg_u32 %arg_val1,  

      kernarg_u32 %arg_val2,  

      kernarg_u32 %arg_val3) 

{ 

@__OpenCL_vec_add_kernel_entry: 

// BB#0:                                // %entry 

      ld_kernarg_u32    $s0, [%arg_val3]; 

      workitemabsid_u32 $s1, 0; 

      cmp_lt_b1_u32     $c0, $s1, $s0; 

      ld_kernarg_u32    $s0, [%arg_val2]; 

      ld_kernarg_u32    $s2, [%arg_val1]; 

      ld_kernarg_u32    $s3, [%arg_val0]; 

      cbr    $c0, @BB0_2; 

      brn    @BB0_1; 

@BB0_1:                                 // %if.end 

      ret; 

@BB0_2:                                 // %if.then 

      shl_u32     $s1, $s1, 2; 

      add_u32     $s2, $s2, $s1; 

      ld_global_f32    $s2, [$s2]; 

      add_u32     $s3, $s3, $s1; 

      ld_global_f32    $s3, [$s3]; 

      add_f32     $s2, $s3, $s2; 

      add_u32     $s0, $s0, $s1; 

      st_global_f32    $s2, [$s0]; 

      brn    @BB0_1; 

}; 
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ARCHITECTED QUEUING LANGUAGE 

Defines dispatch characteristics in a small packet in 

memory 

–Platform neutral work offload 

Designed to be interpreted by the device 

–Firmware implementations 

–Or directly implemented in hardware 
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QUEUES 

User space memory allows queues to span devices 

Standardized packet format (AQL) enables flexible and portable use 

Single consumer, multiple producer of work 

–Enables support for task queuing runtimes and device->self enqueue 

Queue 



Architected Dispatch 
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WHAT DO THESE CAPABILITIES OFFER US? 

 Combining: 

– Shared virtual memory 

– A strong memory model  

– Architected communication packets the world opens 

 

 Offers huge power, safety and a world of opportunities 

 

 Let’s look at a couple of immediate benefits 
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SECURITY IMPROVEMENTS WITH HSA  

With HSA, GPU operates in the same security infrastructure as the CPU 

– User and privileged memory 

– Read, write and execute protections by page table entry 

 Internally, the GPU partitions functionality by privilege level 

– User mode compute queues can only run AQL packets 

– User mode graphics command buffers cannot write privileged registers 

HSA supports fixed time context switching, which is resistant to denial of service (DoS) 

attacks 

– Today’s GPUs are vulnerable to denial of service attacks 

• Long or infinite shader programs 

• Full GPU reset required to restore service 

– With HSA, fair scheduling and context switching ensures a responsive system 
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EXPANDING SVM SCOPE TOWARDS POWERFUL DEVICE CONTROL 

 We need a global view of the GPU, not just of the shader cores 

 

 

 

 

 

 

 

 

 

 

 Let’s look at how GPU work dispatch works currently 

Of course, we need to see the 

data here too 

Most importantly! We need to be able to compute on the 

same data here. 
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Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

A 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

C 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

Command Flow Data Flow 

Soft 

Queue 

Kernel 

Mode 

Driver 

Application 

B 

Command Buffer 

User 

Mode 

Driver 

Direct3D 

DMA Buffer 

TODAY’S COMMAND AND DISPATCH FLOW 

 

 

Hardware 

Queue 

A GPU 

HARDWARE 

C 

B 
A B 

Data copied into kernel memory 

Queue packets explicitly DMAd to the 

device 
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FUTURE COMMAND AND DISPATCH FLOW 

 

Application 

A 

Application 

B 

Application 

C 

Optional Dispatch 

Buffer 

GPU 

HARDWARE 

Hardware Queue 

A 

A A 

Hardware Queue 

B 

B B 

Hardware Queue 

C 

C C 

C 

C 

Queues are in user-mode virtual 

memory 

Command processor can read queues 

directly 
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FUTURE COMMAND AND DISPATCH FLOW 

 

Application 

A 

Application 

B 

Application 

C 

Optional Dispatch 

Buffer 

GPU 

HARDWARE 

Hardware Queue 

A 

A A 

Hardware Queue 

B 

B B 

Hardware Queue 

C 

C C 

C 

C 

 No required APIs 

 No Soft Queues 

 No User Mode Drivers 

 No Kernel Mode Transitions 

 No Overhead! 

 Application codes to the 

hardware 

 User mode queuing 

 Hardware scheduling 

 Low dispatch times 



Advances do not stop… 



40 HSA AND THE  MODERN GPU – COMPLEX HPC SPRING SCHOOL  |   JUNE 03, 2013   |   PUBLIC 

ARCHITECTURE PROGRESSION 

System 

Integration 

GPU compute  

context switch 

GPU graphics  

pre-emption 

Quality of Service 

Extend to  

Discrete GPU 

Architectural 

Integration 

Unified Address Space 

for CPU and GPU 

Fully coherent memory 

between CPU & GPU 

GPU uses pageable 

system memory via 

CPU pointers 

Optimized 

Platforms 

Bi-Directional Power 

Mgmt between CPU and 

GPU 

GPU Compute C++ 

support 

User mode schedulng 

Physical 

Integration 

Integrate CPU & GPU  

in silicon 

Unified Memory 

Controller 

Common Manufacturing 

Technology 



Questions? 
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