
HSA and the modern GPU
LEE HOWES

JUNE 03, 2013

2 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HSA AND THE MODERN GPU

 In this brief talk we will cover three topics:

– Changes to the shader core and memory system

– Changes to the use of pointers

– Architected definitions to use these new features

 We’ll look both at how the hardware is becoming more flexible and give some idea about why

The HD7970 and Graphics Core Next

4 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

AMD RADEON™ HD7970 - GLOBALLY

 A multi-core superscalar parallel processing engine

 Two command processors

– Capable of processing two command queues concurrently

 Full read/write cache hierarchy

 SIMD cores grouped in fours

– Scalar data and instruction cache per cluster

– L1, LDS and scalar processor per core

 Up to 32 cores / compute units

5 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

COMMAND PROCESSORS

 Consume input packets

– Compute packets for most of us, (currently) generated from OpenCL™

commands

– Graphics packets follow a similar path

 Multiple queues processed

– So multiple queues can be in progress simultaneously

– Enables concurrent execution of kernels

 Command processor instructs a scheduler to generate work

– Scheduler generates work to place on the machine as capacity is

available

– Work is generated in the form of wavefronts

– A wavefront is analogous to a CPU thread and represents 64 OpenCL

work items, or 64 parallel instances of the OpenCL kernel program as

written.

6 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

 The heart of Graphics Core Next:

– A scalar processor with four 16-wide vector units

– Each lane of the vector unit is a full single precision floating point unit

 Caches and a very large register file

64kB Registers
64kB Registers

64kB Registers

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

64kB vector registers
8kB scalar
registers

THE SIMD CORE

7 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

MAPPING FROM THE PROGRAMMING LEVEL

 We often view GPU programming as a set of independent threads, more reasonably known as “work
items” in OpenCL:
float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 Which we flatten via a sequence of compilation steps to a GPU ISA: v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

8 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

SIMD EXECUTION

 You are probably aware that in reality, work items aren’t threads.

 The majority of modern GPUs follow a SIMD architecture

– Each work item describes a lane of execution

– Multiple work items execute together in SIMD fashion with a single program counter

– Some clever mask management to handle divergent control flow across the vector

 So trivially, you might imagine something like the following:

v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

9 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

v_cmp_gt_f32 r0,r1

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

ACTUALLY, A LITTLE MORE INTERESTING THAN THAT

 Look closely at that code:

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

s_mov_b64 exec,s0

v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

Scalar instructions Vector instructions

10 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

64kB
read-write
L1 cache

Instruction
decode etc

512kB
read-write
L2 cacheFMISC SSE

FMUL SSE

FADD SSE
Scalar
units

(3 scalar
ALUs, branch
control etc)

FAMILIAR?

 If we add the frontend of the core…

64kB Local Data Share: 32 banks with integer atomic units

16kB
read-write
L1 cache

Scalar
processor

Instruction
decode etc

“Graphics Core Next” core

“Barcelona” core

v_cmp_gt_f32 r0,r1 //a > b, establish VCC

s_mov_b64 s0,exec //Save current mask

s_and_b64 exec,vcc,exec //Do “if”

s_cbranch_vccz label0 //Branch if all fail

v_sub_f32 r2,r0,r1 //result = a – b

v_mul_f32 r2,r2,r0 //result=result * a

How would an implicitly vectorized program look mapped onto here using SSE

instructions?

So different?

11 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

a = 0.0, b = 1.0 a = 2.0, b = 1.0 a = 4.0, b = 2.0 a = 2.0, b = 3.0

EXECUTION OVER A VECTOR

 Taking the same example, running over a fictional 4-element vector (the HD7970 uses a 64-element

vector execution):
float fn0(float a,float b)

{

 if(a>b)

 return((a-b)*a);

 else

 return((b-a)*b);

}

 v_cmp_gt_f32 r0,r1

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

label1:

s_mov_b64 exec,s0

v_cmp_gt_f32 r0,r1

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

v_cmp_gt_f32 r0,r1

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

v_cmp_gt_f32 r0,r1

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

Generates a

comparison bit

vector

Scalar execution

on the mask sets

up the “if” branch Execute the

parallel body of

the if

Invert the mask to

activate the other

lanes

If vector condition

is all 0, skip the if

with a full branch

If vector condition

is all 0, skip the

else with a full

branch

Execute the else

block over the

entire vector
Finally, reset the

mask to the

stored value

12 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

SOME LESSONS FROM THIS

 We could compile SPMD code in a similar fashion to a modern CPU:

– In this case using SSE intrinsics

– Mask operations performed directly on vector registers, but the effect is the same

v_cmp_gt_f32 r0,r1

s_mov_b64 s0,exec

s_and_b64 exec,vcc,exec

s_cbranch_vccz label0

v_sub_f32 r2,r0,r1

v_mul_f32 r2,r2,r0

label0:

s_andn2_b64 exec,s0,exec

s_cbranch_execz label1

v_sub_f32 r2,r1,r0

v_mul_f32 r2,r2,r1

label1:

s_mov_b64 exec,s0

vcc = _mm_cmpeq_epi32(r0, r1);

exec = s0;

exec = _mm_and_ps(vcc, exec);

int a = _mm_movemask_ps(vcc);

if(a) goto label0

r2 = _mm_sub_ps(r0, r1);

r0 = _mm_mul_ps(r2, r2);

label0:

exec = _mm_and_ps(s0, exec);

int a = _mm_movemask_ps(exec);

if(a) goto label1

r0 = _mm_sub_ps(r1, r2);

r1 = _mm_mul_ps(r2, r2);

label1:

s0 = exec;

13 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

SOME LESSONS FROM THIS

 Modern GPUs are not as different from CPUs as marking departments often like to claim

– The differences are absolutely NOT core count

– Thread count, is a different story

 The SPMD-on-SIMD or SIMT mapping is almost entirely a tool chain construct

– It may have some hardware acceleration

– In general it maps to traditional vector units

14 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

THE CACHE HIERARCHY

 Up to 512kB of L2 cache

– Fully read/write

– Coherent across the device

– Associated with the memory interfaces

 16kB of L1 cache per core

– Fully read/write

– Write through

– Relaxed consistency

 Local data share

– The __local memory in OpenCL

– Program controlled scratchpad memory

– Allocations are shared across multiple work-items in an OpenCL work-

group

– 64kB/core

 Note that there is also 256kB of registers per core

15 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

MEMORY CONSISTENCY

 Write through L1

– Each write will commit to L2 in order

– Dirty masks ensure merging on write to L2

– Partially clean lines will be evicted from L1 to force a merge into a full

cache line from L2

– Fully dirty lines will not evict so the next read will be directly from L1

 Reads will read from L1 if data is available

– Must be forced to read from L2

 Implementing consistent memory operations requires the use of

two primary functions

– Setting the GLC (globally coherent) bit on the read instruction to

invalidate the L1 line and read from L2

– Use the S_WAITCNT instruction to wait for previous memory accesses

to have completed

SIMD Core

L1

Memory crossbar

L2 bank 0 L2 bank 1

SIMD Core

L1

SIMD Core

L1

16 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

“TRINITY” APU FLOORPLAN
32nm SOI, 246mm2, 1.303BN TRANSISTORS

DDR3 Controller Dual Channel DDR3

Memory Controller

AMD HD Media Accelerator

(UVD, AMD Accelerated

Video Converter)

A
M

D
 H

D
 M

e
d

ia

A
c
c
e
le

ra
to

r

L2 Cache L2 Cache

GPU

Memory

Scheduler

AMD Radeon™ GPU

Dual Core

x86 Module

Dual Core

x86 Module

Up to 4

“Piledriver”

Cores with total 4MB L2

Display

PLL
DP/

HDMI®

HDMI, DisplayPort 1.2,

DVI controllers

Display Controller

Unified Northbridge

Channel

PCIe®
PCIe®
PCIe®

PCI Express® I/O —

24 lanes, optional digital

display interfaces

N
o
rt

h
b
ri
d
g
e

17 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

THE TRINITY APU MEMORY SYSTEM

DDR3 System memory

GPU SIMD units

SIMD Core 32kB LDS

SIMD Core 32kB LDS

Piledriver cores

512kB L2 cache

16kB
L1 Data
cache

x86 core

SIMD Core 32kB LDS

SIMD Core 32kB LDS

SIMD Core 32kB LDS

SIMD Core 32kB LDS

2MB
L2 cache

2MB
L2 cache

16kB
L1 Data
cache

x86 core

16kB
L1 Data
cache

x86 core

16kB
L1 Data
cache

x86 core

Unified Northbridge

 CPU and GPU both have direct paths to

northbridge

 The GPU has a second route

– The Fusion Control Link

– Allows GPU access to x86 memory space

– Allows interaction with the CPU caches

– Supports platform coherent memory

– Coherency switches from GPU L2 to CPU L2

for this path

 Memory allocations are marked

– Switch between paths at the page level

Shared Virtual Memory

19 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

EXPANDING THE MEMORY SYSTEM - HUMA

 GCN-based devices are more flexible

– Start to look like CPUs with few obvious shortcomings

 The Trinity APU integrates GPU and CPU cores very closely

– It can share memory consistently

– However, that shared memory must be addressed physically

– It is pinned by the driver – this is limited

 We needed to go a step further on an SoC

– Memory in those caches should be the same memory used by the “host” CPU

– In the long run, the CPU and GPU become peers, rather than having a host/slave relationship

20 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

WHAT DOES THIS MEAN?

We can store x86 virtual pointers here

Data stored here is addressed in the same way as that on the CPU

We can map this into the same virtual address space

We can perform work on CPU data directly here

21 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

IOMMUV2

 The final step is to coherent, virtual and pageable access to system memory from the GPU’s memory

controller

 The GPU needs to:

– Use a virtual x86 address

– Find that that address in the TLB

– If the address is not in the TLB, read the page tables to find it

– If the page is not in memory at all, ask that it be moved in and wait for completion

 The latest discrete GPUs can do this, and Trinity has the beginnings with the IOMMU (input output

memory management unit) version 2

– Although Trinity’s GPU cores are an earlier generation and cannot make use of it

22 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

USE CASES FOR THIS ARE FAIRLY OBVIOUS

 Pointer chasing algorithms with mixed GPU/CPU use

 Algorithms that construct data on the CPU, use it on the GPU

 Allows for more fine-grained data use without explicit copies

 Covers cases where explicit copies are difficult:

– Picture OS allocated data that the OpenCL runtime doesn’t know about

 However, that wasn’t quite enough to achieve our goals…

Architected Access

24 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HETEROGENEOUS SYSTEM ARCHITECTURE – AN OPEN PLATFORM

Open Architecture, published specifications

–HSAIL virtual ISA

–HSA memory model

–Architected Queuing Language

HSA system architecture

– Inviting partners to join us, in all areas

–Hardware companies

–Operating Systems

–Tools and Middleware

–Applications

HSA Foundation has been formed

25 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

ARCHITECTED INTERFACES

Standardize interfaces to features of the system

–The compute cores

–The memory hierarchy

–Work dispatch

Standardize access to the device

–Memory backed queues

–User space data structures

26 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HSA INTERMEDIATE LAYER - HSAIL

HSAIL is a virtual ISA for parallel programs

–Finalized to ISA by a runtime compiler or “Finalizer”

Explicitly parallel

–Designed for data parallel programming

Support for exceptions, virtual functions,

and other high level language features

Syscall methods

–GPU code can call directly to system services, IO,

printf, etc

Debugging support

27 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HSA MEMORY MODEL

Designed to be compatible with C++11, Java and .NET

Memory Models

Relaxed consistency memory model for parallel

compute performance

Loads and stores can be re-ordered by the finalizer

Visibility controlled by:

–Load.Acquire

–Store.Release

–Barriers

28 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HSA MEMORY MODEL

 A strict memory model allows us to reason about correctness of communicating processes

 This sort of strengthening of the memory model allows for predictable locks, lock free data structures and

similar concepts

– Work item -> work item communication

– Pipelines

– Locking of shared data by concurrent work items

 It also provides a stronger basis for academic research

– While relying on OpenCL concurrency has never been portable, adding the HSA memory model would at least

make the communication guarantees reliable

29 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

HSAIL 0.95 PROGRAMMERS REFERENCE MANUAL NOW PUBLIC

Available at hsafoundation.com

Announced on May 29th

Describes:

– The RISC-like virtual ISA

– Binary format

– Memory model

version 1:0:$full:$small;

function &get_global_id(arg_u32 %ret_val) (arg_u32 %arg_val0);

function &abort() ();

kernel &__OpenCL_vec_add_kernel(

 kernarg_u32 %arg_val0,

 kernarg_u32 %arg_val1,

 kernarg_u32 %arg_val2,

 kernarg_u32 %arg_val3)

{

@__OpenCL_vec_add_kernel_entry:

// BB#0: // %entry

 ld_kernarg_u32 $s0, [%arg_val3];

 workitemabsid_u32 $s1, 0;

 cmp_lt_b1_u32 $c0, $s1, $s0;

 ld_kernarg_u32 $s0, [%arg_val2];

 ld_kernarg_u32 $s2, [%arg_val1];

 ld_kernarg_u32 $s3, [%arg_val0];

 cbr $c0, @BB0_2;

 brn @BB0_1;

@BB0_1: // %if.end

 ret;

@BB0_2: // %if.then

 shl_u32 $s1, $s1, 2;

 add_u32 $s2, $s2, $s1;

 ld_global_f32 $s2, [$s2];

 add_u32 $s3, $s3, $s1;

 ld_global_f32 $s3, [$s3];

 add_f32 $s2, $s3, $s2;

 add_u32 $s0, $s0, $s1;

 st_global_f32 $s2, [$s0];

 brn @BB0_1;

};

30 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

ARCHITECTED QUEUING LANGUAGE

Defines dispatch characteristics in a small packet in

memory

–Platform neutral work offload

Designed to be interpreted by the device

–Firmware implementations

–Or directly implemented in hardware

31 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

QUEUES

User space memory allows queues to span devices

Standardized packet format (AQL) enables flexible and portable use

Single consumer, multiple producer of work

–Enables support for task queuing runtimes and device->self enqueue

Queue

Architected Dispatch

33 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

WHAT DO THESE CAPABILITIES OFFER US?

 Combining:

– Shared virtual memory

– A strong memory model

– Architected communication packets the world opens

 Offers huge power, safety and a world of opportunities

 Let’s look at a couple of immediate benefits

34 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

SECURITY IMPROVEMENTS WITH HSA

With HSA, GPU operates in the same security infrastructure as the CPU

– User and privileged memory

– Read, write and execute protections by page table entry

 Internally, the GPU partitions functionality by privilege level

– User mode compute queues can only run AQL packets

– User mode graphics command buffers cannot write privileged registers

HSA supports fixed time context switching, which is resistant to denial of service (DoS)

attacks

– Today’s GPUs are vulnerable to denial of service attacks

• Long or infinite shader programs

• Full GPU reset required to restore service

– With HSA, fair scheduling and context switching ensures a responsive system

35 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

EXPANDING SVM SCOPE TOWARDS POWERFUL DEVICE CONTROL

 We need a global view of the GPU, not just of the shader cores

 Let’s look at how GPU work dispatch works currently

Of course, we need to see the

data here too

Most importantly! We need to be able to compute on the

same data here.

36 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

A

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

C

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

Command Flow Data Flow

Soft

Queue

Kernel

Mode

Driver

Application

B

Command Buffer

User

Mode

Driver

Direct3D

DMA Buffer

TODAY’S COMMAND AND DISPATCH FLOW

Hardware

Queue

A GPU

HARDWARE

C

B
A B

Data copied into kernel memory

Queue packets explicitly DMAd to the

device

37 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

Queues are in user-mode virtual

memory

Command processor can read queues

directly

38 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

FUTURE COMMAND AND DISPATCH FLOW

Application

A

Application

B

Application

C

Optional Dispatch

Buffer

GPU

HARDWARE

Hardware Queue

A

A A

Hardware Queue

B

B B

Hardware Queue

C

C C

C

C

 No required APIs

 No Soft Queues

 No User Mode Drivers

 No Kernel Mode Transitions

 No Overhead!

 Application codes to the

hardware

 User mode queuing

 Hardware scheduling

 Low dispatch times

Advances do not stop…

40 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

ARCHITECTURE PROGRESSION

System

Integration

GPU compute

context switch

GPU graphics

pre-emption

Quality of Service

Extend to

Discrete GPU

Architectural

Integration

Unified Address Space

for CPU and GPU

Fully coherent memory

between CPU & GPU

GPU uses pageable

system memory via

CPU pointers

Optimized

Platforms

Bi-Directional Power

Mgmt between CPU and

GPU

GPU Compute C++

support

User mode schedulng

Physical

Integration

Integrate CPU & GPU

in silicon

Unified Memory

Controller

Common Manufacturing

Technology

Questions?

42 HSA AND THE MODERN GPU – COMPLEX HPC SPRING SCHOOL | JUNE 03, 2013 | PUBLIC

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software

changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD

reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such

revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY

INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF

ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.

in the United States and/or other jurisdictions. OpenCL is a trademark of Apple Inc. used with permission by Khronos. Other names are for informational

purposes only and may be trademarks of their respective owners.

