
Dark Secrets: 
Heterogeneous Memory Models

Lee Howes

2015-02-07, Qualcomm Technologies Inc.



2

Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Te chnologies, Inc., a 

wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm’s enginee ring, research and 

development functions, and substantially all of its product and services businesses, including its semiconductor business, QC T, and QWI. References 

to “Qualcomm” may mean Qualcomm Incorporated, or subsidiaries or business units within the Qualcomm corporate structure, as a pplicable.

For more information on Qualcomm, visit us at: 

www.qualcomm.com & www.qualcomm.com/blog 

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may 

be trademarks or registered trademarks of their respective owners.



3

Introduction – why 
memory consistency

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



4

Many programming languages have coped with weak memory models

These are fixed in various ways:

− Platform-specific rules

− Conservative compilation behavior

A clear memory model allows developers to understand their program behavior!

− Or part of it anyway. It’s not the only requirement but it is a start.

Many current models are based on the Data-Race-Free work

− Special operations are used to maintain order

− Between special instructions reordering is valid for efficiency

Weak memory models



5

Many languages have tried to formalize their memory models

− Java, C++, C…

− Why?

OpenCL and HSA are not exceptions

− Both have developed models based on the DRF work, via C11/C++11

Ben Gaster, Derek Hower and I have collaborated on HRF-Relaxed

− An extension of DRF models for heterogeneous systems

− To appear in ACM TACO

Unfortunately, even a stronger memory model doesn’t solve all your problems…

Better memory models



6

Current 
restrictions

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



7

Three specific issues:

− Coarse grained access to data

− Separating addressing between devices and the host process

− Weak and poorly defined ordering controls

Any of these can be worked around with vendor extensions or device knowledge

Weakness in the OpenCL 1.x memory model



8

Host controls data

Coarse host->device synchronization

Data

Host

OpenCL

Device

Allocate



9

A single running command owns an entire allocation

Coarse host->device synchronization

Data

Host

OpenCL

Device

Run command



10

The host can access it using map/unmap operations

Coarse host->device synchronization

Data

Host

OpenCL

Device

Map



11

Coarse host->device synchronization

Data

Host

OpenCL

Device

Unmap



12

Coarse host->device synchronization

Data

Host

OpenCL

Device

Run command



13

Separate addressing

We can update memory with a pointer

Host

OpenCL

Device

data[n].ptr = &data[n+1];

data[n+1].val = 3;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



14

Separate addressing

We try to read it – but what is the value of a?

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



15

Separate addressing

Unfortunately, the address of data may change

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



16

Bounds on visibility

Controlling memory ordering is challenging

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1



17

Physically, this probably means within a single core

Bounds on visibility

Within a group we can synchronize

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Write



18

Barrier operations synchronize active threads and constituent work-items

Bounds on visibility

Within a group we can synchronize

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Barrier



19

Bounds on visibility

Within a group we can synchronize

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Read



20

Bounds on visibility

Between groups we can’t

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Read?



21

Bounds on visibility

What if we use fences?

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Write



22

Ensure the write completes for a given work-item

Bounds on visibility

What if we use fences?

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Fence



23

Fence at the other end

Bounds on visibility

What if we use fences?

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Fence



24

Ensure a read is after the fence

Bounds on visibility

Within a group we can synchronize

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 0

Memory

Work 

item 0

Work 

item 1

Work 

item 2

Work 

item 3

WorkGroup 1

Read



25

Probably seeing a write that was written after a fence guarantees that the fence completed

− The spec is not very clear on this

There is no coherence guarantee

− Need the write ever complete?

− If it doesn’t complete, who can see it, who can know that the fence happened?

Can the flag be updated without a race?

− For that matter, what is a race?

Spliet et al: KMA. 

− Weak ordering differences between platforms due to poorly defined model.

Meaning of fences

When did the fence happen?

{{

data[n] = value;

fence(…);

flag = trigger;

||

if(flag) {

fence(…);

value = data[n];

}}



26

Basics of 
OpenCL 2.0

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



27

Sharing virtual addresses

We can update memory with a pointer

Host

OpenCL

Device

data[n].ptr = &data[n+1];

data[n+1].val = 3;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



28

Sharing virtual addresses

We try to read it – but what is the value of a?

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



29

Sharing virtual addresses

Now the address does not change!

Host

OpenCL

Device

int a = data[n].ptr->val;

assert(a == 3);

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]



30

Unmap on the host, event dependency on device

Sharing data – when does the value change?

Coarse grained

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

data[n].ptr = &data[n+1];

data[n+1].val = 3;

clUnmapMemObject

Event e



31

Granularity of data race covers the whole buffer

Sharing data – when does the value change?

Coarse grained

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

data[n].ptr = &data[n+1];

data[n+1].val = 3;

clUnmapMemObject

Event e



32

Event dependency on device – caches will flush as necessary

Sharing data – when does the value change?

Fine grained

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

data[n].ptr = &data[n+1];

data[n+1].val = 3;

Event e



33

Data will be merged – data race at byte granularity

Sharing data – when does the value change?

Fine grained

Host

OpenCL

Device

int a = data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

data[n].ptr = &data[n+1];

data[n+1].val = 3;

Event e



34

No dispatch-level ordering necessary

Sharing data – when does the value change?

Fine grained with atomic support

Host

OpenCL

Device
int a = atomic-load data[n].ptr->val;

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

data[n].ptr = &data[n+1];

Atomic-store data[n+1].val = 3;



35

Races at byte level – avoided using the atomics in the memory model

Sharing data – when does the value change?

Fine grained with atomic support

Host

OpenCL

Device

struct Foo {

Foo *ptr;

int val;

};

struct Foo {

Foo *ptr;

int val;

};

Data[n]

Data[n+1]

int a = atomic-load data[n].ptr->val;

data[n].ptr = &data[n+1];

Atomic-store data[n+1].val = 3;



36

This is an ease of programming concern

− Complex apps with complex data structures can more effectively work with data

− Less work to package and repackage data

It can also improve performance

− Less overhead in updating pointers to convert to offsets

− Less overhead in repacking data

− Lower overhead of data copies when appropriate hardware support present

Sharing virtual addresses



37

Most memory operations are entirely unordered

− The compiler can reorder

− The caches can reorder

Unordered relations to the same location are races

− Behaviour is undefined

Ordering operations (atomics) may update the same location

− Ordering operations order other operations relative to the ordering operation

Ordering operations default to sequentially consistent semantics

Sharing virtual addresses

SC-for Data-Race-Free by default – release consistency for flexibility



38

Commonly tried on OpenCL 1.x

− Not at all portable!

− Due to: weak memory ordering, lack of forward progress

Is the situation any better for OpenCL 2.0?

− Yes, memory ordering is now under control!

− Is forward progress?

So what can we safely do with synchronization

Take a spin wait…



39

Yes and no

− Conceptually similar to CPU waiting on an event – ie all work-items to complete

− Other app could occupy device, graphics could consume device, work may interfere with graphics

− Risk of whole device being occupied elsewhere so work on the assumption that this context owns the 

device

So what can we safely do with synchronization

CPU thread waits on work-item – works?

CPU threadOpenCL Work-item

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



40

Probably

− The spec doesn’t guarantee this

− How do you know what core your work-item is on?

− All you know is which work-group it is in.

So what can we safely do with synchronization

Work-item on one core waits for work-item on another core – works?

Core 1

OpenCL Work-item

Core 0

OpenCL Work-item

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



41

Sometimes

− On some architectures this is fine

− On other architectures if both SIMD threads are on the same core: starvation

− Thread 0 may never run to satisfy thread 1’s spin wait

So what can we safely do with synchronization

Work-item on one thread waits for work-item on another thread – works?

{SIMD} thead 1

OpenCL Work-item

{SIMD} thread 0

OpenCL Work-item

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



42

No (well, sometimes yes, but rarely)

− Fairly widely understood, but sometimes hard for new developers

− If you think about the mapping to SIMD it is fairly obvious

− A single program counter can’t be in two places at once – some architectures can track multiple

So what can we safely do with synchronization

Work-item waits for work-item in the same SIMD thread – works?

{SIMD} thead 0

OpenCL Work-item 1

{SIMD} thread 0

OpenCL Work-item 0

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



43

Maybe, maybe not

− It depends entirely on where the work-items are mapped in the group

− Same thread – no

− Different threads – maybe

− The developer can often tell, but it isn’t portable and the compiler can easily break it

So what can we safely do with synchronization

Work-items in a work-group

Work-group 0

OpenCL Work-item

Work-group 0

OpenCL Work-item

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



44

Maybe, maybe not

− It depends entirely on where the work-groups are placed on the device

− Two work-groups on the same core – you have the thread to thread case

− Two work-groups on different cores – it probably works

− No way to control the mapping!

So what can we safely do with synchronization

Work-groups

Work-group 1

OpenCL Work-item

Work-group 0

OpenCL Work-item

// Do work dependent on flag

Store-release value to flag

while(load-acquire flag != value) {}

// Do work dependent on flag

Happens-before



45

Realistically

− Spin waits on other OpenCL work-items are just not portable

− Very limited use of the memory model

So what can you do?

− Communicating that work has passed a certain point

− Updating shared data buffers with flags

− Lock-free FIFO data structures to share data

− OpenCL 2.0’s sub-group extension provides limited but important forward progress guarantees

So what can we safely do with synchronization

Overall, a fairly poor situation



46

Heterogeneity in 
OpenCL 2.0

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



47

Even acquire-release consistency can be expensive

In particular, always synchronizing the whole system is expensive

− A discrete GPU does not want to always make data visible across the PCIe interface

− A single core shuffling data in local cache does not want to interfere with DRAM-consuming throughput 

tasks

OpenCL 2 optimizes this using the concept of synchronization scopes

Lowering implementation cost



48

WI WI

SG SG

WG WG

Not all communication is global – so bound it

Hierarchical memory synchronization

Synchronization is expensive

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core



49

WI WI

SG SG

WG WG

Sub-group scope

Hierarchical memory synchronization

Scopes!

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core



50

WI WI

SG SG

WG WG

Sub-group scope; Work-group scope

Hierarchical memory synchronization

Scopes!

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core



51

WI WI

SG SG

WG WG

Sub-group scope; Work-group scope; Device scope

Hierarchical memory synchronization

Scopes!

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core



52

WI WI

SG SG

WG WG

Sub-group scope; Work-group scope; Device scope; All-SVM-Devices scope

Hierarchical memory synchronization

Scopes!

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core



53

WI WI

SG SG

WG WG

Hierarchical memory synchronization

Release to the appropriate scope, acquire from the matching scope

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

store-release work-group-scope x load-acquire work-group-scope x



54

WI WI

SG SG

WG WG

Hierarchical memory synchronization

Release to the appropriate scope, acquire from the matching scope

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

store-release device-scope x load-acquire device-scope x



55

WI WI

SG SG

WG WG

Hierarchical memory synchronization

If scopes do not reach far enough, this is a race

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

store-release work-group-scope x load-acquire work-group-scope x



56

Allows aggressive hardware optimization to coherence traffic

− GPU coherence in particular is often expensive – GPUs generate a lot of memory traffic

The memory model defines synchronization rules in terms of scopes

− Insufficient scope is a race

− Non-matching scopes race (in the OpenCL 2.0 model, this isn’t necessary)

Scoped synchronization



57

Four address spaces in OpenCL 2.0

− Constant and private are not relevant for communication

− Global and local maintain separate orders in the memory model

Synchronization, acquire/release behavior etc apply only to local OR global, not both

− The global release->acquire order below does not order the updates to a!

Address space orderings

{SIMD} thead 1

OpenCL Work-item

{SIMD} thread 0

OpenCL Work-item

local-store a = 2

Global-store-release value to flag

while(global-load-acquire flag != value) {}

assert local-load a==2

Local-happens-before



58

Take an example like this:

− void updateRelease(int *flag, int *data);

If I lock the flag, do I safely update data or not?

− The function takes pointers with no address space

− The ordering depends on the address space

− The address space depends on the type of the pointers at the call site, or even earlier!

There are ways to get the fence flags, but it is messy, care must be taken

Multiple orderings in the presence of generic pointers



59

Heterogeneous 
memory ordering

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



60

Sequential consistency aims to be a simple, easy to understand, model

− Behave as if the ordering operations are simply interleaved

In the OpenCL model, sequential consistency is guaranteed only in specific cases:

− All memory_order_seq_cst operations have the scope memory_scope_all_svm_devices and all affected 

memory locations are contained in system allocations or fine grain SVM buffers with atomics support 

− All memory_order_seq_cst operations have the scope memory_scope_device and all affected memory 

locations are not located in system allocated regions or fine-grain SVM buffers with atomics support 

Consider what this means…

− You start modifying your app to have more fine-grained sharing of some structures

− Suddenly your atomics are not sequentially consistent at all!

− What about SC operations to local memory?

Limits of sequential consistency



61

These are data-race-free memory models

They only guarantee ordering in the absence of races

− So we only actually order things we can observe! Order can be relaxed between atomics.

Is such a limit necessary?

First, scopes…

WI WI

SG SG

WG WG

GPU Device

Core

WG WG

SG SG

WI WI

Core

WIWI

SGSG SGSG

WIWI

WG WG



62

In one part of the execution, we have SC operations at device scope

− Let’s assume this is valid

Is such a limit necessary?

First, scopes…

WI WI

SG SG

WG WG

GPU Device

Core

WG WG

SG SG

WI WI

Core

WIWI

SGSG SGSG

WIWI

WG scope SC

Operations.

Ordered SC.

WG WG



63

Elsewhere we have another set of SC operations 

Is such a limit necessary?

First, scopes…

WI WI

SG SG

WG WG

GPU Device

Core

WG WG

SG SG

WI WI

Core

WIWI

SGSG SGSG

WIWI

WG scope SC

Operations.

Ordered SC.

WG scope SC

Operations.

Ordered SC.

WG WG



64

Any access across from one work-group to another is a race

− It is equivalent to a non-atomic operation

− Therefore it is invalid

Is such a limit necessary?

First, scopes…

WI WI

SG SG

WG WG

GPU Device

Core

WG WG

SG SG

WI WI

Core

WIWI

SGSG SGSG

WIWI

WG scope SC

Operations.

Ordered SC.

WG WG

An access like this is a race

WG scope SC

Operations.

Ordered SC.



65

In Hower et. al.’s work on Heterogeneous-Race-Free memory models this is made explicit

Sequential consistency can be maintained with scopes

Access to invalid scope

− Is unordered

− Is not observable

− So this is still valid sequential consistency: everything observable, ie that is race-free, is SC

Making sequential consistency a partial order



66

We can apply SC semantics here for the same reason

− Actions to coarse-grained memory is not visible to other clients

− However – coarse buffers don’t fit cleanly in a hierarchical model

In Gaster et al. (to appear ACM TACO) we use the concept of observability as a memory 

model extension

− “At any given point in time a given location will be available in a particular set of scope instances out to 

some maximum instance and by some set of actors. Only memory operations that are inclusive with that 

maximal scope instance will observe changes to those locations.”

Observability can migrate using API actions

− Map, unmap, and event dependencies

Extending to coarse-grained memory



67

Observability

Initial state

WI WI

SG SG

WG WG

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

Memory 

Allocation

Observability bounds – device scope on the GPU



68

Observability

Map operation

WI WI

SG SG

WG WG

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

Memory 

Allocation

Observability moves to 
device scope on the CPU



69

Observability

Unmap

WI WI

SG SG

WG WG

OpenCL System

GPU Device

Core

WG WG

SG SG

WI WI

CPU Device DSPDevice

Core Core CoreCore Core

Memory 

Allocation

Unmap will transfer dependence back to an OpenCL device



70

We can cleanly put scopes and coarse memory in the same memory consistency model

− It is more complicated than, say, C++

− It is practical to formalize, and hopefully easy to explain

There is no need for quirky corner cases

We merely rethink slightly

− Instead of a total order S for all SC operations we have a total order Sa for each agent a of all SC operations 

observable by that agent such that all these orders are consistent with each other.

− This is a relatively small step from the DRF idea, which is effectively that non-atomic operations are not 

observable, and thus do not need to be strictly ordered.

The point



71

Separate orders for local and global memory are likely to be painful for programmers

Do we need them?

− We have formalized the concept (also in the TACO paper) using multiple happens-before orders that subset 

memory operations

− We also describe bridging-synchronization-order as a formal way to allow join points

− It is messy as a formalization. The harm to the developer is probably significant.

Joining address spaces



72

However!

− Hardware really does have different instructions and different timing to access different memories

− Can all hardware efficiently synchronize these memory interfaces?

Joining address spaces

Processing core

Local 

memory

L1 Cache

L2 Cache DRAM
Texture 

Cache



73

However!

− Hardware really does have different instructions and different timing to access different memories

− Can all hardware efficiently synchronize these memory interfaces?

Joining address spaces

Processing core

Local 

memory

L1 Cache

L2 Cache DRAM
Texture 

Cache

Entirely different interfaces from 
the processing core



74

However!

− Hardware really does have different instructions and different timing to access different memories

− Can all hardware efficiently synchronize these memory interfaces?

− We will have to see how this plays out

− Consider this a warning to take care if you try to use this aspect of OpenCL 2.0

Joining address spaces

Processing core

Local 

memory

L1 Cache

L2 Cache DRAM
Texture 

Cache

Entirely different interfaces from 
the processing core



75

Summary

Introduction
Current 

restrictions

Basics of

OpenCL 2.0

Heterogeneity in

OpenCL 2.0

Heterogeneous 

memory 

ordering

Summary



76

Like mainstream languages, heterogeneous programming models are adopting firm memory 

models

Without fundamental execution model guarantees the usefulness is limited

We are making progress on both these counts

Things are improving



77

Qualcomm Incorporated includes Qualcomm’s licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Te chnologies, Inc., a 

wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm’s enginee ring, research and 

development functions, and substantially all of its product and services businesses, including its semiconductor business, QC T, and QWI. References 

to “Qualcomm” may mean Qualcomm Incorporated, or subsidiaries or business units within the Qualcomm corporate structure, as a pplicable.

For more information on Qualcomm, visit us at: 

www.qualcomm.com & www.qualcomm.com/blog 

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names may 

be trademarks or registered trademarks of their respective owners.

Thank you
Follow us on:


